
Production\Law Reviews\1238 Brooklyn Law School\516758 Brooklyn Law Review 78#3\Working Files\516758 special covers.indd

BROOKLYN
LAW REVIEW

Vol. 78 Spring 2013 No. 3

Software Patents and/or Software Development

Wendy Seltzer

929

Software Patents and/or Software
Development∗

Wendy Seltzer†

INTRODUCTION

Many contemporary treatments of the patent system
begin with Fritz Machlup’s damning with faint praise:

If we did not have a patent system, it would be irresponsible, on the
basis of our present knowledge of its economic consequences, to
recommend instituting one. But since we have had a patent system
for a long time, it would be irresponsible, on the basis of our present
knowledge, to recommend abolishing it.1

Yet he concludes that for all its imperfections, the
patent system is still worth keeping.2 Patent may introduce
costs and inefficiencies, this analysis goes, but since patents
serve a necessary function in creating incentives to innovate,
we must bear and mitigate their costs. The time is ripe to
revisit that analysis.

In the case of software patents, I challenge the incentive
side of the equation: Patents do not provide a useful incentive
to innovate in the software industry, I contend, because the
patent promise ill-suits the engineering and development
practices and business strategies of software production. The
problem is not merely an inefficiency in implementation of
software patent, but a structural mismatch between where the

 ∗ © 2013 Wendy Seltzer. This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
 † Senior Fellow, Yale Law School Information Society Project, and Senior
Researcher, Berkman Center for Internet & Society at Harvard University. Thanks to
workshop participants at the University of Colorado, Princeton Center for Information
Technology Policy, Yale Law School, and TPRC. Research performed while a Fellow at
Silicon Flatirons Center at University of Colorado School of Law was funded by a
generous grant from Brad Feld to the Silicon Flatirons Center. All opinions are those of
the author. Contact wendy@seltzer.org.
 1 SUBCOMM. ON PATENTS, TRADEMARKS, & COPYRIGHTS OF THE S. COMM. ON
THE JUDICIARY, 85TH CONG., AN ECONOMIC REVIEW OF THE PATENT SYSTEM 80 (Comm.
Print 1958), [hereinafter S. SUBCOMM., ECONOMIC REVIEW].
 2 Id.

930 BROOKLYN LAW REVIEW [Vol. 78:3

incentive applies and how software innovation happens. Even
an ideally implemented software patent—well examined, fully
disclosed and enabling, and properly scoped in light of the prior
art—would fail to serve the incentive functions intended by the
Constitution, the Patent Act, and standard patent theory.

Previous scholarship, whether critical or congratulatory
of software patent, has largely failed to examine the structure
of software development and the institutional specifics of
patent’s operation in this industry. I therefore look at these
mechanics: How is the incentive function of patent believed to
operate? How does it operate in the software industry? Does
the tool serve its goals? Addressed head on, even before
compounding the issue with side effects and unintended
consequences, I conclude that the answer to this last question
is “no.” Present knowledge and experience now offer sufficient
evidence that patents disserve software innovation.

Part I situates the problem by providing an account of
the tangle of patent lawsuits, licenses, and threats in the
mobile phone industry.

Part II describes the nature of software development, its
sources of innovation, and its business environment. This part
draws on sources from engineering, computer science, and
business and strategy literature, as well as the experiences of
commercial and open source software developers. I discuss
several ways in which software development differs from the
canonical model of manufacturing widgets as well as the
challenges of going from idea to implementation, including
prototyping, revising to meet user needs, and debugging. With
the aim of identifying common frameworks, this part focuses on
the nuts and bolts of how systems function, a feature shared
with New Institutional Economics literature. While market
dynamics differ among segments, we can identify commonalities
derived from the underlying nature of software.

Part III reviews existing legal theories of patent
incentives and innovation. It formalizes the mismatch between
incentive theory and software patent practice. In many of the
accounts that attribute value to software patents, a circularity
exists: startups claim that patents are important because
investors demand them, whereas venture capitalists, who view
patents as a signal of capacity or uniqueness, are in fact seeing
a show aimed at attracting investment rather than a
demonstration of genuine novelty or value to the customer
market. Kitch’s prospect theory does no better to validate

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 931

software patents. The patent claim is staked too early to give
the proprietor a useful coordinating or notice function.

Part IV applies the theories about patent incentives and
innovation to software more specifically. Where do software
developers and venture capital backers seek patents, and how
do individuals and firms use them? Looking particularly at the
timing of patent’s intervention in the system, I conclude that it
encourages idea-claiming, not innovation; idea-generation, but
not implementation, debugging, and deployment. A player
focused on patenting can obtain numerous patents without
developing any of the technologies to useful levels of
deployment or disclosure, leaving a minefield of abstract patent
claims for others who actually deploy software. Hence, the
“troll” problem is particularly acute in the software field.
Because generating a patentable idea for an initial invention
rarely creates a bottleneck in the software development
process, software patents that never reach implementation
more frequently create entangling thickets than productive
incentives. Here, I also analyze the patent alternatives that are
available to protect software development: trade secrecy,
copyright, first-mover advantage, and market complements.

Part V uses this analysis to reflect on the institutional
dynamics of patent law. In particular, close analysis of software
patents and software development adds to the ongoing debate
over technology—specificity versus uniformity in law and the
proper role of courts versus Congress in deciding patent
questions. This analysis will also assist in better framing the
question of how best to uphold the constitutional mandate to
“promote the progress of science and useful arts.”3

I. THE MOBILE PHONE MESS

A. Smartphone Patent Wars

Smartphones are everywhere. As the hottest selling
consumer product category in consumer electronics history,
smartphones have provoked moral panics (are we losing ourselves
behind screens, neglecting interpersonal communication? are kids
“sexting”?); safety risks (don’t text and drive); and development
optimism (in developing countries, where more people have cell
phones than landlines, the phone is becoming the basis for
mobile commerce and access to computing power).

 3 U.S. CONST. art. I, § 8, cl. 8.

932 BROOKLYN LAW REVIEW [Vol. 78:3

These devices have been at the heart of the last few years’
most ferocious patent storms.4 Throughout 2012, in the United
States alone, dozens of patent litigations focused directly or
indirectly on mobile phone technology.5 Some of those suits relate
to hardware features but more frequently concern the
smartphone’s software capabilities.6 For example, Lodsys, a
Marshall, Texas corporation, has no known products, but the
company offers patented technologies “available for licensing”7
and has sued or threatened to sue dozens of application software
companies alleging that in-app purchases and rating functions
utilize Lodsys proprietary technology.8 Although Lodsys claims
that Apple, Google, and Microsoft have patent licenses covering
their own “nameplate” products,9 it argues that those do not extend

 4 See, e.g., Apple, Inc. v. Samsung Electronics Co., 11-cv-1846 (N.D. Cal. 2012);
Apple Inc. v. Motorola Mobility, No. 11-cv-178 (W.D. Wisc. 2012); Microsoft Corp. v.
Motorola, Inc., No. C10-1823 (W.D. Wash. 2012); In the Matter of Mobile Electronic Devices,
including Wireless Communication Devices, Portable Music and Data Processing Devices,
and Tablet Computer, 2012 WL 4077563 (U.S. Int’l Trade Comm’n).
 5 See generally Fred I. Williams & Rehan M. Safiullah, The Smartphone Patent
Wars: A U.S. Perspective, 18 IP LITIGATOR, July/Aug. 2012, available at
http://cdn.akingump.com/images/content/5/5/v2/5506/IPLIT070812WilliamsSafiullah.pdf.
 6 See generally id. As the case of software-defined radio demonstrates, the
lines between hardware and software are changing. See, e.g., articles discussed in
Software Defined Radio, ARRL.ORG, http://www.arrl.org/software-defined-radio (last
visited Mar. 22, 2013); see also Stephen M. Blust, Software Based Radio, in SOFTWARE
DEFINED RADIO: ENABLING TECHNOLOGIES 5 (Walter H.W. Tuttlebee, ed. (2002))
(describing a “shift from employing a traditional hardware-focused application-specific
approach to radio implementation to using a software application to perform the radio
tasks on a computing platform”).
 7 Licensing, LODSYS GROUP LLC, http://www.lodsys.com/licensing.html (last
visited Oct. 2, 2012).
 8 Eric Mack, Mobile Patent Wars: A Closer Look at How Everyone Loses, PC
WORLD (Nov. 6, 2011, 9:00 PM), http://www.pcworld.com/article/239873/mobile_patent_
wars_a_closer_look_at_how_everyone_loses.html.
 9 See Q: Lodsys Is Trying to Force Apple to Take a License by Pressuring IOS
Developers, LODSYS GROUP LLC (May 15, 2011), http://www.lodsys.com/1/post/
2011/05/q-lodsys-is-trying-to-force-apple-to-take-a-license-by-pressuring-ios-
developers.html; Q: What About Other Operating Systems such as Android?, LODSYS
GROUP LLC (May 15, 2011), http://www.lodsys.com/1/post/2011/05/q-what-about-other-
operating-systems-such-as-android.html.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 933

to third-party developers.10 Apple has moved to intervene,11 and
Google has called for reexamination of the patents.12

Patents are clearly costly.13 Their drafting and
prosecution take time and money that could be spent on
product development. Litigation costs start at nearly half a
million dollars before a case even gets to trial.14 Damages in the
event of a loss can run to millions of dollars.15 Further,
companies are now making acquisitions with a primary aim to
obtain patents. A coalition including Apple, Microsoft, and
Research In Motion paid $4.5 billion to acquire Nortel’s patent
portfolio in the company’s bankruptcy auction in July 2011.16
These patents amounted to $700,000 apiece for their coalition
of purchasers—who, given that the sale included no going
concern, acquired only the use of the patents but none of the
know-how or experience of the inventors. When Google
announced its agreement a few weeks later to acquire Motorola
Mobility Inc. for $12.5 billion, the acquisition of a major mobile
hardware manufacturer was widely read as a purchase of a
defensive portfolio of mobile software patents as a means to

 10 Apple’s License Claim Disputed, LODSYS GROUP LLC (May 31, 2011),
http://www.lodsys.com/1/post/2011/05/-apples-license-claim-disputed.html; see also Sarah
Perez, Patent Holding Firm Lodsys Goes After Android Developer for Use of In-App Payments,
READWRITEWEB (May 27, 2011), http://www.nytimes.com/external/readwriteweb/2011/05/
27/27readwriteweb-patent-holding-firm-lodsys-goes-after-andro-98683.html.
 11 Apple Inc.’s Motion to Intervene, Lodsys, LLC v. Combay, Inc. et al., 11-cv-272,
(E.D. Tex. June 9, 2011 available at http://www.scribd.com/doc/57508610/0-Apple-Motion-to-
Intervene-Against-Lodsys.
 12 See Google Steps Up to Defend Android Developers from Patent Lawsuit,
WIRED.COM (Aug. 13, 2011, 2:20 AM), http://www.wired.com/gadgetlab/2011/08/google-
android-lodsys-patent.
 13 See generally JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE:
HOW JUDGES, BUREAUCRATS, AND LAWYERS PUT INNOVATORS AT RISK 39-42 (2008).
“Innovators can benefit from patents and at the same time be burdened with dispute
costs that exceed the value of those benefits.” Id. at 96.
 14 STEVEN M. AUVIL & DAVID A. DIVINE, AM. INTELLECTUAL PROP. LAW ASS’N,
REPORT OF THE ECONOMIC SURVEY 2011, at 35 (2011).
 15 A recent PWC study found that annual median damages awards ranged
from $2.4M to $10.5M. See CHRIS BARRY ET AL., THE CONTINUED EVOLUTION OF
PATENT DAMAGES LAW (PriceWaterhouseCoopers ed., 2010).
 16 See Chris V. Nicholson, Apple and Microsoft Beat Google for Nortel Patents,
N.Y. TIMES DEALBOOK (July 1, 2011, 4:58 AM), http://dealbook.nytimes.com/
2011/07/01/apple-and-microsoft-beat-google-for-nortel-patents/ (last updated July 1,
2011, 8:31 PM). Similarly, in 2011, another consortium consisting of Microsoft, Oracle,
Apple, and EMC spent $450 million for 882 patents owned by Novell. See CPTN
Holdings LLC and Novell Inc. Change Deal in Order to Address Department of Justice’s
Open Source Concerns, DEP’T OF JUSTICE (Apr. 20, 2011), http://www.justice.gov/
opa/pr/2011/April/11-at-491.html; Press Release, Novell Completes Merger with
Attachmate and Patent Sale to CPTN Holdings LLC, Novell (Apr. 27, 2011),
http://www.novell.com/news/press/2011/4/novell-completes-merger-with-attachmate-
and-patent-sale-to-cptn-holdings-llc.html.

934 BROOKLYN LAW REVIEW [Vol. 78:3

protect Google’s Android mobile operating system and its
users.17 From a strategic perspective, there were plenty of
reasons for Google not to enter the hardware business, but it
apparently became clear that without patents to counter-assert
against patent attackers, Android would lose the confidence of
other hardware makers and fail.

Big companies are not only on the defensive, though;
most are also wielding patents on offense in the smartphone
arena. Apple has stopped smartphone imports at the border,
suing before the International Trade Commission (ITC) to enjoin
HTC, Samsung, and Motorola from bringing allegedly infringing
smartphones into the United States.18 In Europe, Samsung sued
to block Apple’s sales.19 Microsoft has sued Motorola, among
others; Nokia has sued Apple.20 And the list goes on.

B. The Idea of Pinch-to-Zoom

Patents are supposed to promote innovation. Even these
costs might be justified, their proponents say, if they result in
more innovation. To understand patent basics, we might look
at a patent from the middle of the road: 7,479,949, “Touch
screen device, method, and graphical user interface for
determining commands by applying heuristics,”21 and 7,812,828,
“Ellipse Fitting for Multi-Touch Surfaces,” issued October 12,
2010.22 These patents belong to Apple, an extraordinarily
successful company that manufactures actual hardware and
software, as compared to non-practicing entities like Lodsys
who do neither. Apple Inc. has sued and been sued on
infringement claims for both of these patents.

The ’949 patent claims the use of touch gestures on a
screen to issue commands by three different methods: as a
stored computer program (or software); as a device operated by
the software; and finally, as a method implemented within the

 17 See Amir Efrati & Spencer E. Ante, Google’s $12.5 Billion Gamble, WALL
ST. J., Aug. 16, 2011, at A1 (“The Motorola deal also gives the search giant a trove of
more than 17,000 patents to defend itself against a rash of lawsuits against its Android
software”).
 18 See Williams & Safiullah, supra note 5, at 7-9.
 19 Lance Whitney, Apple Suing to Block Samsung Phone Sales in Japan,
CNET NEWS (Sept. 8, 2011, 6:25 AM), http://news.cnet.com/8301-13578_3-20103189-
38/apple-suing-to-block-samsung-phone-sales-in-japan/.
 20 Williams & Safiullah, supra note 5, at 6-7.
 21 U.S. Patent No. 7,479,949 (filed Apr. 11, 2008), available at http://patft.uspto.gov/
netahtml/PTO/srchnum.htm (search “7479949”).
 22 U.S. Patent No. 7,812,828 (filed Feb. 22, 2007), available at http://patft.uspto.gov/
netahtml/PTO/srchnum.htm (search “7812828”).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 935

software.23 The patent describes this program/device/method in
more than 350 pages with 293 drawings, yet it includes no
source code and no demonstration of the underlying
implementation.24 Anyone who wanted to implement Jobs et
al.’s “method, and graphical user interface for determining
commands by applying heuristics”25 would still have to write his
or her own code.

Many aspects of the user interface are described in the
specification and diagrams of the ’949 patent, but after being
narrowed during prosecution and reexamination, the patent
claims only some aspects of scrolling in one or two dimensions
and selecting which areas of a screen to move.26 But because the
patent is not limited to any particular program used by Apple,
its narrowed claims expand again upon the company’s actions
enforcing it. Any device could be accused of infringing the
patent if the device permits finger-driven scrolling and
panning; if it determines, based on touch motion, the degree of
vertical-only scrolling; or if it permits a two-fingered twist to
rotate. Many devices are so accused.27

True, these gestures have been used to great effect on
the iPhone, which Steve Jobs introduced in January 2007 with
a slide reading “Patented”28 and released to the public (to
camped-out lines in front of Apple stores) on June 29, 2007.29
But market demand does not necessarily indicate that the idea
was a novel or non-obvious solution, the legal prerequisites for
the grant of any patent.30 Rather, it indicates that Apple

 23 ’949 Patent, at [54].
 24 ’949 Patent.
 25 See id.
 26 See generally id.
 27 See Complaint at 4, Apple, Inc. v. Motorola, Inc., No. 11-08540, 2011 WL
6257973 (Dist. Ct. N.D. Ill. 2012) (accusing a number of Motorola mobile devices of
infringing U.S. Patent No. 7,479,949, such as the “Droid, Droid 2, Droid X, Cliq, Cliq
XT, BackFlip, Devour A555, Devour i1, and Charm”).
 28 See Nilay Patel, Apple vs. Palm: The In-Depth Analysis, ENGADGET (Jan.
28, 2009, 1:28 PM), http://www.engadget.com/2009/01/28/apple-vs-palm-the-in-depth-
analysis/; Macworld 2007 Keynote Photo Gallery, ENGADGET, http://www.engadget.com/
photos/macworld-2007-keynote-photo-gallery/131095/ (last visited Aug. 25, 2012).
 29 See Jeremy W. Peters, Gave Up Sleep and Maybe a First-Born, but at Least
I Have an iPhone, N.Y. TIMES, June 30, 2007, at C3, available at http://www.nytimes.com/
2007/06/29/technology/29cnd-phone.html.
 30 See 35 U.S.C. §§ 102, 103 (2006) (setting forth conditions for novelty and
non-obvious subject matter). Novelty and utility are prerequisites of patentability. Id.
Thus, the patent must not have been disclosed to the public (by various means) prior to
application. Id. § 102. Additionally, a patent may not be granted if the invention was a
non-obvious solution, that is, the idea must not have been obvious to a person skilled in
the art. Id. § 103. In other words, it must not have been obvious to other potential
inventors to “combine references,” or ideas contained in research available to others at

936 BROOKLYN LAW REVIEW [Vol. 78:3

implemented its solution well. Use of that “invention” is on its
own clearly insufficient to make a product succeed. For
example, HP/Palm—which Apple accused of copying its
multitouch gestures in Palm’s WebOS—shuttered the entire
WebOS product line in response to low sales, despite critical
acclaim for innovative features distinct from Apple’s.31

Apple’s release of the iPhone certainly inspired the more
rapid development of other full-featured smartphones with
touch screens. According to Steven Levy, Google dropped a
keyboard-focused model from its Android efforts after seeing
the iPhone.32 In 2008, Steve Jobs visited Google, where he “felt
that Google had stolen Apple’s intellectual property to do so,
appropriating features for which Apple had current or pending
patents.”33 According to Levy, Jobs

apparently was successful, at least in the first version of the Google
phone, in halting [Google’s] implementation of some of the
multitouch gestures that Apple had pioneered. . . . According to one
insider, Jobs demanded that Google remove support of those
gestures from Android phones. Google complied, even though those
gestures, which allowed users to resize images, were tremendously
useful for viewing web pages on handheld devices.34

Yet Android had multitouch support in its software,
though it remained hidden; the code was present but unused.35
Outside the United States, and in modified U.S. phones, users
could “pinch-to-zoom” with impunity.36 In mid-2010, when

the time, in order to make the invention. Id.; see also KSR Int’l Co. v. Teleflex Inc., 550
U.S. 398, 407 (2007).
 31 See Brian X. Chen, In Flop of H.P. TouchPad, an Object Lesson for the Tech
Sector, N.Y. TIMES (Jan. 1, 2012), http://www.nytimes.com/2012/01/02/technology/
hewlett-packards-touchpad-was-built-on-flawed-software-some-say.html (describing
the WebOS platform); Mat Honan, HP Killing WebOS Devices, GIZMODO (Aug. 18,
2011, 3:20 PM), http://gizmodo.com/5832291/hp-killing-webos (describing HP’s
announcement that it was ceasing development).
 32 See STEVEN LEVY, IN THE PLEX: HOW GOOGLE THINKS, WORKS, AND SHAPES
OUR LIVES 221 (2011); see also Scott Cleland, What Really Made Steve Jobs So Angry at
Google?, GIZMODO (Sept. 10, 2012), http://gizmodo.com/5941817/what-really-made-
steve-jobs-so-angry-about-google.
 33 LEVY, supra note 32, at 221.
 34 Id.
 35 See John Herrman, The G1’s Deepest, Darkest Secret: Hidden Multi-Touch,
GIZMODO (Nov. 18, 2005, 5:28 AM), http://gizmodo.com/5091705/the-g1s-deepest-
darkest-secret-hidden-multitouch (discussing the ability of Google’s first Android
smartphone, the T-Mobile G1, to detect multiple, simultaneous touches after code in the
touchscreen’s software driver that had been “commented out” was re-enabled); see also Ryan
Gardner, Proving the G1 Screen Can Handle Multi-Touch, RYEBRYE (Nov. 17, 2008),
http://www.ryebrye.com/blog/2008/11/17/proving-the-g1-screen-can-handle-multi-touch.
 36 See Frederic Lardinois, Nexus One Gets Official Multitouch Support
(Updated), READWRITEWEB (Feb. 2, 2010), http://www.readwriteweb.com/archives/nexus_one_

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 937

Google’s Eric Schmidt was no longer on Apple’s board, Apple
sued HTC before the ITC and federal district court in
Delaware, alleging patent infringement.37 “Within days, Google
rolled out a change in Android’s operating system: it would now
support the pinch and stretch multitouch gestures that Jobs
had demanded Google remove.”38 Google’s response to an
inquiry from ReadWriteWeb invoked standards:

Looking around the mobile industry, from Apple to Palm to HTC and
Motorola—it’s clear that pinch-to-zoom technology has become a
standard and popular way for users to interact with their mobile
phones. Likewise, Android users can now truly benefit from this
capability with the availability of Android 2.1, which powers a new
class of devices with larger touchscreens and more interactive features.

Despite the rationalizations of “increased processor power,” it
appears that patent threats retarded the functionality of
Android’s touch screen by almost two years.39

Google is still feeling the impact of Apple’s patent claims
in lawsuits against its Android partners.40 Larry Page himself
emphasized the patent angle of its merger with Motorola on
Google’s corporate blog:

We recently explained how companies including Microsoft and Apple
are banding together in anti-competitive patent attacks on Android.
The U.S. Department of Justice had to intervene in the results of one
recent patent auction to “protect competition and innovation in the
open source software community” and it is currently looking into the
results of the Nortel auction. Our acquisition of Motorola will
increase competition by strengthening Google’s patent portfolio,

gets_official_multitouch_support.php (“Oddly enough, Nexus One (and Motorola Droid)
users outside of the U.S. have always been able to make use of these multitouch
features by default.”).
 37 Complaint, Apple Inc. v. High Tech Computer Corp., Nos. 10-166-GMS, 10-
167-GMS, 2011 WL 124446 (D. Del. Jan. 14, 2011) (No. 10CV00166), 2010 WL 976411
(filed Mar. 2, 2010); Complaint, Apple Inc. et al v. High Tech Computer Corp., Nos.
10166-GMS, 10-167-GMS, 2011 WL 124446 (D. Del. Jan. 14, 2011) (No. 10CV00167),
2010 WL 711393 (filed Mar. 2, 2010).
 38 See LEVY, supra note 32, at 237.
 39 Jacqui Cheng, T-Mobile, Google Finally Unveil the First Android Phone,
ARSTECHNICA (Sept. 23, 2008, 10:56 AM), http://arstechnica.com/gadgets/2008/09/t-
mobile-google-finally-unveil-the-first-android-phone/.
 40 At least until the Motorola deal, Google did not make hardware, but
developed the operating system and released it open source, as well as licensed
applications for use by partners. Google depends on independent hardware vendors to
make smartphones, which it may help support with marketing. Google does not charge
for the operating system, but earns revenue by advertising to the people who use
Google’s services on their phones. See Brian X. Chen & Claire Cain Miller, Android Is
No. 1, But Google Says It Still Makes Little Money, N.Y. TIMES BITS BLOG (Jan. 20,
2012, 6:13 PM), http://bits.blogs.nytimes.com/2012/01/20/android-small-revenues/.

938 BROOKLYN LAW REVIEW [Vol. 78:3

which will enable us to better protect Android from anti-competitive
threats from Microsoft, Apple and other companies.41

Android users already faced disruption to their devices
from several patent lawsuits, and after Google’s opponents
purchased Nortel’s patent portfolio, Google and its Android
partners (including HTC and Motorola) had reason to fear a
deepening thicket. Without many patents of its own, Google
could not have made the traditional counterstrike of suing its
attackers for infringement.42 Motorola’s mobile portfolio (17,000
issued patents and 7,500 pending applications) added to the
Android’s arsenal.43

Of course Motorola also makes hardware—smartphones
that run Android—but few analysts emphasized that point.44
There, the acquisition raises strategic questions for Google: Can
it convincingly offer the Android platform to companies against
whom it now competes? Even if Google maintains Motorola as a
separate business, as Page says the company intends,45 will now-
competing vendors such as HTC, Samsung, and Acer be
reassured of Google+Motorola’s neutrality among them?

Owning a handset maker could improve Android, if it
shortens the feedback loop for problem-reporting and new
ideas, but it could hurt the platform—and its end-users—even
more by scaring off competing hardware vendors, which would
shrink the base to which new applications are written and
reduce the diversity of options available to end-users. As
proprietor of an open, multi-sided market, Google needs to
serve Android’s hardware vendors, app developers, and end-
users well enough that a large enough group of each continue
to bring it value while directing end-users to the ads whose sale
puts money into Google’s pocket.

The patent motivations are more straightforward in the
Motorola purchase. It does not take deliberate copying to
infringe a patent, and patents are granted on small enough

 41 Supercharging Android: Google to Acquire Motorola Mobility, GOOGLE:
OFFICIAL BLOG (Aug. 15, 2011), http://googleblog.blogspot.com/2011/08/supercharging-
android-google-to-acquire.html.
 42 Id.
 43 Stephen Shankland, Google’s Page Explains Motorola Acquisition, CNET
(Aug. 15, 2011), http://news.cnet.com/8301-30685_3-20092367-264/googles-page-
explains-motorola-acquisition/.
 44 Dan Rowinski, The New Motorola: Google’s Hardware Division Steps into
the Future, READWRITEWEB (Sept. 6, 2012), http://www.readwriteweb.com/mobile/
2012/09/the-new-motorola-googles-hardware-division-steps-into-the-future.php.
 45 Google to Acquire Motorola Mobility, GOOGLE INVESTOR RELATIONS (Aug.
15, 2011), http://investor.google.com/releases/2011/0815.html.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 939

increments of software advances that an independently
developed application may incorporate dozens to hundreds of
elements on which others claim patents.46 At millions of dollars a
lawsuit, it is expensive to disprove them.47 At least if those other
innovators are also making phones or software, Google is now
more likely to hold patents on what they are doing too, paving
the way for a potential cross-license rather than a lawsuit.48

Shouldn’t we be able to avoid those patent threats and
cross-licensing transaction costs? As Google’s pre-Motorola
travails showed, it is almost impossible to opt out of the patent
system, even if one chooses to publish and not patent his or her
inventions.49 By contrast, the copyright system permits one to
share work under a permissive license such as a Creative
Commons CC-BY,50 while defense against infringement requires
only proof that one has never accessed another’s work.51 Patent
instead puts the developer on the defensive: one can truly
guarantee patent-safety only by ensuring that every bit of
technology used was published more than seventeen to twenty
years ago.52 Even then, the developer faces the threat of suit for
infringing a non-obvious combination of the prior art.53

Patent is dis-serving its purpose in this market. If a
single device has 250,000 infringement opportunities,54 the

 46 Steve Lohr, A Patent War in Your Pocket, N.Y. TIMES, Aug. 25, 2012, at A4,
available at http://www.nytimes.com/2012/08/26/technology/apple-samsung-case-shows-
smartphone-as-lawsuit-magnet.html.
 47 See BARRY, supra note 15.
 48 Ted Sichelman & Stuart J.H. Graham, Patenting by Entrepreneurs: An
Empirical Study, 17 MICH. TELECOMM. & TECH. L. REV. 111, 121 (2010).
 49 Timothy B. Lee, Top Judge: Ditching Software Patents a “Bad Solution,”
ARSTECHNICA (May 13, 2012) (quoting Former Federal Circuit Judge Paul Michel, an
expert in the field of intellectual property, as arguing that “software firms don’t have
the option to opt out of the patent system”). Rare but perhaps not impossible: Richard
Hipp of SQLite says he only uses twenty-year old, published algorithms to keep his
code free of patent clouds. See Msg #00026, OSDIR.COM (Aug. 2009),
http://osdir.com/ml/sqlite-dev/2009-08/msg00026.html (last visited Oct. 31, 2012).
 50 See CREATIVE COMMONS, http://creativecommons.org (last visited Oct. 31, 2012).
 51 See Baxter v. MCA, Inc., 812 F.2d 421, 423 (9th Cir. 1987) (“[A] plaintiff
may establish [copyright infringement of software] by circumstantial evidence of: (1)
defendant’s access to the copyrighted work prior to the creation of defendant’s work,
and (2) substantial similarity of both general ideas and expression between the
copyrighted work and the defendant’s work”).
 52 35 U.S.C.A. § 154(a)(2) & (c)(1) (West 2012).
 53 See supra note 30 (discussing the requirements for patentability).
 54 See Richard Waters, Patent Hunting is Latest Game in Tech Bubble
Circuit, FIN. TIMES (Inside Business) (July 27, 2011, 7:37 PM), http://www.ft.com/cms/s/
0/16025f76-b868-11e0-b62b-00144feabdc0.html#axzz25guuQvQz; Richard Waters, Tech
Patent Arms War Reaches New Level of Intensity, FIN. TIMES, (Inside Business) (Mar. 30,
2011, 5:50 PM), http://www.ft.com/intl/cms/s/0/b0da8540-5aea-11e0-a290-00144feab49a.html#
axzz25guuQvQz.

940 BROOKLYN LAW REVIEW [Vol. 78:3

system puts almost all the power on the side of those who
would hold up, rather than advance, progress in the useful arts.55
Apple, Google, HTC, and others in the smartphone market are
making products in spite of, not because of, a patent system in
which they are more or less unwilling participants.

C. Is Apple’s Success Attributable to the Patent Incentive?

No doubt the iPhone has been terrifically successful,
and some of that success is likely due to its interface design.
That does not, however, answer two important questions about
the patent incentive: First, did the patent incentive spur the
iPhone development, or would Apple and its investors have
gone down the same road if they could have made money by
selling iPhones without the assurance that they could sue those
who introduced similar features into phone interfaces? Second,
do the incentive’s benefits outweigh the harm to competition?

To the extent that Apple has created a visual/gestural
language for smartphone control, we might question whether
exclusive ownership is even appropriate. Much of the value of a
touch standard has been created by the public, who use it, and
by application developers who build on its foundation.56

 55 See Michael A. Heller & Rebecca S. Eisenberg, Can Patents Deter
Innovation? The Anticommons in Biomedical Research, 280 SCIENCE 698, 698 (1998).
 56 See Mark A. Lemley & David McGowan, Legal Implications of Network
Economic Effects, 86 CALIF. L. REV. 479, 483 (1998). Lemley and McGowan describe the
typical “network effects” scenario as one in which “the utility that a user derives from
consumption of a good increases with the number of other agents consuming the good”
and that “a network effect exists where purchasers find a good more valuable as
additional purchasers buy the same good.” Id. So, to the extent that more mobile phone
creators could adopt Apple’s touchscreen technology, consumers would gain more value,
first, as more users interacted with one another by means of this technology and, second,
as more application developers created more programs for use over this platform. Based
on these network effects, the value of the iPhone then derives in part from widespread
adoption of phones using this technology, regardless of whether Apple or Samsung
manufactured any particular device. One could easily imagine a software company that
determined that a touchscreen-based application could be profitable only if 50% of mobile
phones in the market could support the software. If the iPhone had 35% market share
but patents on touch-screen technology prevented other companies from adopting this
technological standard, consumers would never see that new application because it would
never be profitable for that developer to bring it to market. But, even if one other
mobile phone manufacturer were permitted to adopt the technology, assuming no
patent prohibitions for doing so, purchase of the new phone could drive the market
adoption of touch-screen phones over 50% and thereby create the incentives for that
developer—and likely many others—to create a new touch-screen application. The
availability of new applications, in turn, would make the iPhone more valuable and
could even drive its market share beyond its original 35% market saturation. Joseph
Farrell & Phillip Weiser trace the theoretical underpinnings of the often-conflicting
doctrines of internalizing complementary efficiencies (ICE) and modularity. The theory
of ICE, underlying much of antitrust law, maintains that “a monopolist has incentives

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 941

Consumers’ software choices are often shaped by real or virtual
network effects.57 In seeking those network effects, they may be
choosing based less on intrinsic qualities of the product58 than
on its ability to interoperate with those already in the market.
A possibility arises, then, that many of the returns on a
software product may owe less to superior product quality or
moral desert on the part of its creators than to a bandwagon
around de facto standards.59

The ’949 patent itself was one of a line developed out of
work at FingerWorks, a company purchased by Apple in 2005.60
Yet at the time the patent was written, the functions it
described were neither novel nor non-obvious—the legal
prerequisites to any patent grant.61 Its novelty is scant against
the background of a great deal of research in human-computer
interaction. There are indubitably real advances in the state of
the art, but they come from many areas—academic research,

to provide access to its platform when it is efficient to do so.” Joseph Farrell & Philip J.
Weiser, Modularity, Vertical Integration, and Open Access Policies: Towards a
Convergence of Antitrust and Regulation in the Internet Age, 17 HARV. J.L. & TECH 85,
88 (2003). By contrast, modularity reflects the idea that allowing competitors free access
to a platform (e.g., a touchscreen interface) spurs innovation, increases market entry, and
lowers prices. Id. at 95. Given that a patent grants a monopoly over an invention, then,
some might suggest that we properly encourage vendors to produce standards by letting
them capture all the benefits of the standard, including permitting the monopolist to
license its technology to others when it decides that it is efficient to do so. Conversely, by
giving them too large an exclusion right, critics of granting patents on software may
argue that a patent could diminish the public value of the common standard through the
loss of positive externalities gained through network effects.
 57 See CARL SHAPIRO & HAL R. VARIAN, INFORMATION RULES: A STRATEGIC
GUIDE TO THE NETWORK ECONOMY 174-75 (1998).
 58 See, e.g., Pritam Pal, HP’s WebOS Tablet the Touchpad—The Good, the
Bad, and the Ugly, GIZMOWATCH (July 15, 2011), http://www.gizmowatch.com/entry/
hps-webos-tablet-touchpad-good-bad-ugly/ (indicating that the quality of the WebOS
tablet might match or exceed that of iOS).
 59 Some have argued that not all network effects are created equal. For
example, even though Android devices hold top market share, iOS devices are
nonetheless winning the platform war because software developers develop for iOS
first and for Android second. The availability of more and better applications—a
consequence of developer network effects—is what matters in mobile platform
competition, the result of which may ultimately relegate market share and intrinsic
design to secondary considerations. See Pascal-Emmanuel Gobry, Understanding the
“Network Effect” in the Mobile Platform War, BUS. INSIDER (Mar. 5, 2012),
http://articles.businessinsider.com/2012-03-05/research/31123118_1_ios-android-platform.
 60 See Juliana Reyes, How I Sold My Company to Apple: Jeff White, Former
FingerWorks CEO [Q&A], TECHNICALLY PHILLY (Jan. 9, 2013, 10:30 AM),
http://technical.ly/philly/2013/01/09/jeff-white-fingerworks-apple-touchscreen/ (discussing
the work of FingerWorks cofounders John Elias and Wayne Westerman).
 61 See generally Bill Buxton, Multi-Touch Systems that I Have Known and
Loved, BILLBUXTON.COM, http://www.billbuxton.com/multitouchOverview.html (last
updated March 2, 2012); see also Timothy B. Lee, If Android Is a “Stolen Product,” then so
Was the iPhone, ARSTECHNICA (Feb. 23, 2012, 12:00 PM), http://arstechnica.com/tech-
policy/2012/02/if-android-is-a-stolen-product-then-so-was-the-iphone/.

942 BROOKLYN LAW REVIEW [Vol. 78:3

out-of-the-box thinking, testing, and more testing.62 Among the
many projects that anticipated the iPhone’s touch-sensitive
screen were Microsoft’s Surface, projects at MIT Media Lab
and NYU’s Interactive Technologies Program, restaurant
service systems, package delivery-trackers, and various works
existing somewhere in the space between art and function.63

Even if Apple was the first to sell a smartphone with the
iPhone’s precise feature set, Apple cannot plausibly claim that
it was non-obvious to “combine references,” patentese for
applying inventions from distinct prior sources to a new field,
or in new combinations.64 Cellphones have become increasingly
important in the United States and around the world;
motivations to improve the operating system come from many
places, including from the public demanding better phones and
applications for them; hardware vendors wanting to sell
phones; the carriers wanting to sell minutes and data-plans;
application developers looking for strong platforms; and the
prospect of complementary search, advertising, and increased
consumer engagement.

Patent’s defenders argue that patents serve a useful
public disclosure function,65 but what exactly do the touch
patents disclose? Very little that is not already disclosed by the
devices Apple sells on the public market. Play with an iPhone
and you’ll see how its interface works at the surface-level detail
shown in the patent. Second-comers—whether imitators or
independent discoverers of the utility of pressing virtual
buttons—must perform their own experimentation, determine
the proper parameters for the heuristics, squash bugs, and
tame race conditions, all in the course of adapting the user
interface to existing programs and hardware or building new
ones around it. Showing these competitors a market
opportunity does not pave the road there, either through the
patent system or otherwise.

 62 See Buxton, supra note 61.
 63 Id.
 64 See supra note 30; see also Wyers v. Master Lock Co., 616 F.3d 1231, 1240
(Fed. Cir. 2010) (citing KSR Int’l Co. v. Teleflex, Inc., 550 U.S. 398, 402 (2007))
(describing the test for non-obviousness as a common sense inquiry into whether a
person of ordinary skill in the art would have found it obvious to “combine references”;
in order words, it would have been obvious to combine the disparate teachings
concerning the subject matter to be patented in order to come up with the idea).
 65 See infra Section III.A.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 943

D. The Patent System Is Ill-Suited to Software

The patent system is particularly ill-suited to software
because the incentives it creates do not match the way software
is developed. Instead of inducing optimal development of
innovative software, the rules of the patent system encourage
the production of patents. Where patents remain far from
products—yet can be used to extract rents from those who
make and sell products—it will frequently be entirely rational
to set up in the business of “making patents” instead.

Taken to its extreme, we find the business of making
patents in full force at Intellectual Ventures. That company,
founded by former Microsoft CTO Nathan Myhrvold, is
reported to host patent parties, inviting a group of smart
people to sit around a table and generate patent-worthy ideas.66
Sitting behind them, a group of lawyers transcribes these
germs of ideas into patents. Rather than testing whether the
ideas could be turned to practical use with staff or financing
from Intellectual Ventures, the company makes license
demands on others who have already found uses for the
technology, unaided by the silly brainstorming of Intellectual
Ventures. It is not the ideas, but their often-challenging
development and implementation, that need incentive.

Imagine an incentive contract for a corporate manager
that paid a bonus based on the number of ideas the manager
had for product improvement, not on any measure of their
implementation success. If corporate audits measured and
rewarded the number of moleskine notebooks the manager
filled with jottings rather than measuring the business
division’s output or profit, we could expect the manager to fill
bookshelves and file drawers without limit. The firm might get
some inkblots or brilliant doodles, elegant poetry, or doggerel,
but it would be unlikely, except by coincidence, to induce much
in the way of new corporate efficiencies or profits. The board of
directors would be shirking its fiduciary duties if it failed to
restructure its contracts to bring incentives closer to the firm’s
goals. Yet that is essentially the operation of our current patent
system. It tells participants that by producing patents, they

 66 See Inside Nathan Myhrvold’s Mysterious New Idea Machine, BLOOMBERG
BUSINESSWEEK (July 2, 2006), http://www.businessweek.com/stories/2006-07-02/inside-
nathan-myhrvolds-mysterious-new-idea-machine.

944 BROOKLYN LAW REVIEW [Vol. 78:3

can make money fast with the “right to exclude,”67 so long as
someone is producing products. In sum, Congress, as public
fiduciary, is failing to “promote the [p]rogress of [s]cience and
useful [a]rts” through the patent system.68

Patent incentives fail most dramatically in software
because of the nature of software development, the low bar to
patenting software features, and the gap in time and cost
between initial software idea and its implementation in
software design and programming.69 Software and business
method patents are problematic because they protect too early
in the continuum from invention to innovation.70 To obtain a
patent, one need not have built a working model, nor have
showed others how to get through the debugging stages; one
can instead stake a claim on something little more than an
abstraction. From there, the patent-holder might develop and
commercialize a product, but he might also fail or take a
detour, finding it more lucrative to look for that patented germ
of an idea among others’ products, even if those others had
developed it independently.

As is, the patent system provides incentives where they
are not needed: to generate yet more “ideas” without sufficiently
encouraging the development of those ideas into useful products
or services. Patent enforcement acts as an alternative to product
development, rather than an inducement toward it.

II. WHAT IS SOFTWARE?

A. Software Is Everywhere

Software is the instructions given to a computing device
to make it function.71 Software is everywhere. In stand-alone

 67 “It is a ‘bedrock principle’ of patent law that ‘the claims of a patent define
the invention to which the patentee is entitled the right to exclude.’” Phillips v. AWH
Corp., 415 F.3d 1303, 1312 (Fed. Cir. 2005) (quoting Innova/Pure Water, Inc. v. Safari
Water Filtration Sys., Inc., 381 F.3d 1111, 1115 (Fed. Cir. 2004)).
 68 U.S. CONST. art. I, § 8, cl. 8.
 69 See infra Parts II.A & II.B.
 70 See infra Part II.E (discussing software patent problems). With respect to
business method patents, in Bilski v. Kappos, the Supreme Court affirmed the rejection
of a patent on a business method, commenting that “some business method patents
raise special problems in terms of vagueness and suspect validity.” 130 S. Ct. 3218,
3229 (2010); 35 U.S.C.A. § 101 (West 2012).
 71 The Institute of Electrical and Electronics Engineers (IEEE) defines
software as the “computer programs, procedures, and possibly associated
documentation and data pertaining to the operation of a computer system.” IEEE,
STANDARD GLOSSARY OF SOFTWARE ENGINEERING TERMINOLOGY, (STD. 610.12-1990), at
66 (Sept. 28, 1990), available at http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 945

packages for home computers and business automation;
embedded in devices large and small; customized for industrial
uses; hosted “as a service,” in the cloud.72 Software
simultaneously comprises infrastructure, the application-layer,
and digital content; it is both product and component. It is
ubiquitous and nearly universal yet highly specialized.

Software ranges from the simple (the command
print(“Hello World!”) creates a functional software program in
many coding languages)73 to the complex (Microsoft Windows
XP had a reported thirty-five million lines of code, while Vista
contained more than fifty million).74 While it might seem that
Angry Birds and System/360 have as much in common as white
mice and blue whales, there nonetheless exists a meaningful
commonality between them. Just as both of those carboniferous
life-forms share high-level traits based in evolutionary heritage
and the pressures of natural selection, software on many scales
shares common evolutionary features. Operating systems and
drivers, programming tools (including compilers and debuggers),
communications tools, and applications are all made from the
same basic components. These components can be layered, so
that an application can serve as a platform for plug-ins, which
act as its own applications.75 Software can be written at varying
levels of abstraction, ranging from assembler instructions,
human-readable source-code, to modeling languages that

glossary-610.12-1990.pdf. Within the software could lie any number of programming
languages, which are composed of code setting out instructions for the operation of the
computer. At least one statistical study of patents defines “software patents” by a set of
keywords and categories, as the PTO does not classify “software” patents. This study
intends to be inclusive, looking at patents read to bear on software, including those on
software-using devices and methods generally implemented by software—those things
it is possible to infringe by distributing or using software. See generally Sebastian von
Engelhardt, The Economic Properties of Software, (Jena Econ. Research Papers,
Working Paper No. 2008-045, 2008), available at http://hdl.handle.net/10419/25729.
 72 Martin Campbell-Kelly divides software among customization, OS, and
packaged. MARTIN CAMPBELL-KELLY, FROM AIRLINE RESERVATIONS TO SONIC THE
HEDGEHOG: A HISTORY OF THE SOFTWARE INDUSTRY 20 (2003).
 73 See The Linux Documentation Project, The Linux Kernel Module
Programming Guide: Modules vs Programs, § 3.1.2, http://www.tldp.org/LDP/lkmpg/
2.4/html/x437.html (last visited Feb. 25, 2013).
 74 See Steve Lohr & John Markoff, Windows Is So Slow, but Why?, N.Y.
TIMES, Mar. 27, 2006, at C4, available at https://www.nytimes.com/2006/03/27/
technology/27soft.html.
 75 While typically placed at the “application” layer of the OSI stack, software
systems themselves are often layered, with operating systems sitting beneath
applications, and “middleware.” See United States v. Microsoft Corp., 253 F.3d 34, 53
(D.C. Cir. 2001) (discussing the distinctions among the various layers); see also infra
note 274 and accompanying text.

946 BROOKLYN LAW REVIEW [Vol. 78:3

generate software from graphical input.76 A proliferation of
computing devices, driven down in cost according to Moore’s
law, has led to a vast increase in the development and use of
software.77 The net effect has been to produce miniaturization
and embedded systems, on the one end, and “cloud” systems, on
the other; all of which have extended software’s scope.

Software is an information good. Like other information
goods, most of its costs arise from fixed costs of development.
The incremental costs of copying and distribution, however, are
minimal.78 Copyright addresses this type of good by prohibiting
unauthorized copying of the final product. Yet while the direct
copying of a computer program is cheap or free, there may be
substantial additional costs to adapting software for use with
new hardware, processes, and users. These challenges provide
a window of first-mover advantage. Thus, even assuming that
some of Google’s smartphone features were inspired by Apple’s
iPhone, the fact that it took Google more than a year to move
the first Android phone into production79 demonstrates the
unavoidable lag time in adapting hardware for new uses.

Adaptation also presents opportunities for complementary
services, given that consulting and customization work can be
done most effectively by those most familiar with the underlying
software.80 Adaptation knowledge is contextual, however, and is
not encapsulated in patent documents, which conversely aim to
“claim” the invention in the least instructive, generic terms.81

 76 See Keith Short, Modeling Languages for Distributed Applications,
MICROSOFT DEVELOPER NETWORK (Oct. 2003), http://msdn.microsoft.com/en-us/library/
aa302173.aspx.
 77 See infra note 240.
 78 The cost of exclusionary measures raises distribution costs. A producer
restricting access must establish or pay for separate distribution infrastructure: access-
controlled download sites, verification portals, or physical delivery with indicia of
authenticity. See, e.g., How to Protect Software, DIGITAL RIVER DEVELOPER RESOURCE,
http://www.developer-resource.com/how-to-protect-software.htm(last visited Oct. 11, 2012).
A producer distributing free software, however, can post it to third-party platforms such
as sourceforge or github, which host open source code for free, or allow users to share the
cost of distribution through peer-to-peer filesharing such as BitTorrent. See infra note
177. End-users are more likely to share the word-of-mouth marketing for a free product
when they can link it directly. See Andrew Whitmore et al., Open Source Software: The
Role of Marketing in the Diffusion of Innovation, 38 INFO. TECH. & CONTROL, no. 2 (2009).
 79 See supra note 40.
 80 See Josh Lerner & Jean Tirole, Simple Economics of Open Source 18 (HBS
Finance Working Paper No. 00-059, October 2000), available at http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=224008.
 81 Michael Risch, The Failure of Public Notice in Patent Prosecution, 21
HARV. J.L. & TECH. 179, 180 (2007) (“Patent applicants have an incentive to keep
issued patent claims vague because vagueness allows for ex post gaming.”).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 947

B. Who Makes Software?

Our first impression of software development may focus
on the firms who make and sell packaged software, such as
Microsoft and Adobe. Yet much more software is produced by
others: search engine and social media companies such as
Google and Facebook write it to run their services; hardware
manufacturers such as Apple write it to power their devices;
non-software firms write (financial services), buy (law firms), or
commission it to manage their internal operations. Businesses in
most sectors of the economy now depend on software.82

Software-users make a lot of software. While very few
individuals can (yet) make their own medicines successfully,
many people and businesses are “user-innovators” of software,
producing software to use themselves as a tool, as an
intermediate step in some other process or function, or as a
component, rather than to sell as a stand-alone product.83 User
innovators get “use value” from their innovations—a more direct
source of value than the profit from sale to others—and they also
benefit from closer access to “sticky information,” i.e. information
that is costly to acquire, transfer, and use.84 As we will see, user
innovators thus tend to approach intellectual property more
openly, freely revealing their innovations and improvements.

Carliss Baldwin and Eric von Hippel show that lower
communication costs—to which the Internet is key—bring
open-collaborative innovation into competition with producer-
driven innovation, while lower costs in software design
technology make single-user innovators competitive.85 Patents
affect these classes of innovators differently. Whereas
producer-innovators view patents as a means to secure profits,

 82 See Marc Andreessen, Why Software is Eating the World, WALL ST. J. (Aug. 20,
2011), http://online.wsj.com/article/SB10001424053111903480904576512250915629460.html.
 83 See Carliss Y. Baldwin & Eric von Hippel, Modeling a Paradigm Shift:
From Producer Innovation to User and Open Collaborative Innovation, 3-4 (Harvard
Bus. Sch. Fin. Working Paper No. 10-038, 2009), available at http://ssrn.com/
abstract=1502864. Eric S. Raymond says 95 percent of software is developed for in-
house use—for its use value rather than for sale-value. Eric S. Raymond, The Magic
Cauldron ch. 3, CATB.ORG, http://www.catb.org/esr/writings/magic-cauldron/magic-
cauldron.html#toc1 (June 1999).
 84 See generally Joachim Henkel & Eric von Hippel, Welfare Implications of
User Innovation, 30 J. TECH. TRANSFER 73 (2004); see also Eric von Hippel, “Sticky
Information” and the Locus of Problem Solving: Implications for Innovation, 40 MGMT.
SCI. 4, 429-39 (Apr. 1994).
 85 See Baldwin & von Hippel, supra note 83, at 2 (“[I]nnovation by individual
users and also open collaborative innovation are modes of innovating that increasingly
compete with and may displace producer innovation in many parts of the economy.”);
see also id. at 19-20.

948 BROOKLYN LAW REVIEW [Vol. 78:3

user-innovators are motivated by their own direct needs, even
when those needs serve as intermediate steps or tools for
producing something else for profit86—”scratching a developer’s
personal itch” as Eric Raymond puts it.87 User-innovators have
more efficient access to the “sticky information” about these
needs and reap the entire benefit of meeting them.88 Open
collaboration is hindered, rather than helped, by patents, as
innovators trying to share across firm boundaries are stopped
by the firms’ IP counsel89 or subjected to burdensome NDAs and
IP clearing processes.90 As the Internet improves other
conditions for open collaboration and user innovation, patent
becomes a more salient hurdle.

C. How Is Software Made?

Anyone starting out to develop software will typically
have on hand its raw materials: a target computer system and
a programming environment.91 The developer will generate a
problem statement, functional specification, or design
requirements.92 In some cases, this design will be implicit,

 86 Id. at 3-4.
 87 See ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR: MUSINGS ON
LINUX AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY 23 (rev. ed. 2001).
 88 See William W. Fisher III, The Implications for Law of User Innovation, 94
MINN. L. REV. 1417, 1456-57 (2010). User-based incentives are more direct than the
price signals of a market, since a user’s knowledge of his demand need not be
intermediated by the market’s transaction costs. Prices, rightly appreciated by free-
market economists for information exchange, are still a second-best to information
derived from direct experience. Cf. Amy Kapczynski, The Cost of Price: Why and How to
Get Beyond Intellectual Property Internalism, 59 UCLA L. REV. 970 (2012) (arguing
that pricing itself adds cost and inefficiency to interaction).
 89 Andrew T. Pham & Matthew B. Weinstein, Living with Open Source:
Implementing, Managing and Enforcing A Uniform Policy for Your Enterprise, 44 LES
NOUVELLES 162 (2009), available at http://www.lesi.org/les-nouvelles/les-nouvelles-
online/2009/september-2009/2011/08/04/living-with-open-source-implementing-
managing-and-enforcing-a-uniform-policy-for-your-enterprise (“Because of the
complexity and risks associated with open source—where source code is made freely
available for all to review, edit, and use—many closed-source commercial enterprises
discourage or prohibit use of open source; a common and short-sighted practice.”).
 90 See, e.g., Barbara LaSusa & Lawrence LaSusa, Intellectual Property “Best
Practice” Tips for Small Law Departments, MICH. B.J., Jan. 2007, at 32; see also HENRY
W. CHESBROUGH, OPEN INNOVATION: THE NEW IMPERATIVE FOR CREATING AND
PROFITING FROM TECHNOLOGY 174-75 (2003).
 91 Many powerful programming languages and environments are available
open source and free of charge. Web applications are often built on the wholly-free
“LAMP” stack: Linux operating system, Apache webserver, MySQL database, and Perl
or PHP scripting. See generally RAJ KAMAL, EMBEDDED SYSTEMS: ARCHITECTURE,
PROGRAMMING, AND DESIGN (2d ed. 2008).
 92 See IIEE Computer Soc., Guide to the Software Engineering Body of
Knowledge, §§ 1.1-1.6, 2, COMPUTER.ORG (2004), http://www.computer.org/portal/web/

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 949

particularly for smaller individual projects. For longer-term
projects and those requiring coordination among multiple
programmers, more will be written down.93 In either case, the
original specifications often change as development progresses:
new constraints appear or arise from implementation
challenges; user demands change or expand; and available
resources or hardware change.

Software developers treat as commonplace the
proposition that the idea is only a small part of the final
product. Ideas are a dime a dozen; everybody has them.94 It is the
implementation that remains difficult and time-consuming.95
Between software ideas and successful deployment come many
less glamorous but necessary steps: design, implementation,
debugging, and testing (often in multiple rounds).96 Even
deployment may represent only a first step toward market
acceptance; many software products launch with “beta”
versions, and developers continue to tweak the product based
on user feedback.97 Web-based deployment, app stores, and

swebok/htmlformat. The IIEE’s Guide to the Software Engineering Body of Knowledge was
produced in an effort to systematize the discipline of software engineering. Id. at Introduction.
 93 See, e.g., Alan M. Davis et al., A Strategy for Comparing Alternative
Software Development Life Cycle Models, 14 IEEE TRANSACTIONS ON SOFTWARE ENG’G
1453 (1988); Zulkefli Mansor et al., Towards the Development of Success Determinants
Charter for Agile Development Methodology, INT’L J. INFO. TECH. & ENG’G, at 1 (2011),
available at http://www.academia.edu/662663/Towards_the_Development_of_Success_
Determinants_Charter_for_Agile_Development_Methodology (contrasting agile software
development methodologies requiring less planning up front with traditional “waterfall”
development requiring phase-by-phase planning).
 94 So are books on entrepreneurship using that phrase. See, e.g., Google
search for “software ideas ‘dime a dozen,’” GOOGLE, https://encrypted.google.com/
search?tbs=bks%3A1&tbo=1&q=software+ideas+%22dime+a+dozen%22&btnG=Search
+Books (search Google with the phrase “software ideas ‘dime a dozen’”).
 95 The website Halfbakery provides a great illustration, providing a
“communal database of original, fictitious inventions, edited by its users.” More About
the Halfbakery, http://www.halfbakery.com/editorial/about.html (last visited Feb. 25,
2013); see also Clay Shirky, LazyWeb and RSS: Given Enough Eyeballs, Are Features
Shallow Too?, OPENP2P.COM (Jan. 7, 2003), http://openp2p.com/pub/a/p2p/2003/01/
07/lazyweb.html (describing a variety of web sites that permit people to submit ideas
for software they think should exist and developers take the ideas and code them).
 96 See Davis et al., supra note 93, at 1453 fig.1.
 97 See, e.g., Customer Information Control System (CICS): Beta and Early Test
Programs, IBM.COM, http://www-01.ibm.com/software/htp/cics/betas.html (describing
goals of beta release programs for CICS Products). The “beta” label may serve to signal
the developers’ commitment to continue developing the product, suggesting to users
both that their feedback is welcome and that they should be more forgiving of rough
edges. See Tim O’Reilly, Design Patterns and Business Models for the Next Generation
of Software, O’REILLY.COM (Sept. 30, 2005), http://oreilly.com/lpt/a/6228. Some
products, such as Google’s Gmail, used this label for so long that commentators
referred to them as “perpetual beta.” Juliet Lapidos, Why Is Gmail Still in Beta?,
SLATE.COM (Apr. 7, 2009, 6:33 PM), http://www.slate.com/articles/news_and_politics/
explainer/2009/04/why_is_gmail_still_in_beta.html. Non-traditional software development

950 BROOKLYN LAW REVIEW [Vol. 78:3

networked computers and devices make it even easier for
software producers to offer incremental in-place updates.

Narratives of software engineering and design describe
the challenges of working on ideas “only slightly removed from
pure thought-stuff.”98 Frederick P. Brooks’s classic, The
Mythical Man-Month, drew precepts from his experience
managing the development of IBM’s System/360 Operating
System, a major project that was chronically behind schedule
and over budget.99 Among the many lessons Brooks presents,
his instruction to “plan to throw one away” reminds us that
prototypes are essential to good software design.100 The first
version shows the possibility (or futility) of a design; the second
makes it practical. Programmers who get too attached to the
first version may never get beyond it to attain a reliably
functioning second iteration.

A quarter-century after Brooks’s chronicle, Scott
Rosenberg found that similar challenges beset the developers of
the Chandler personal information manager.101 Chandler was
going to revolutionize calendar management and scheduling,
then a tangle of independent applications still migrating
between paper and computer.102 Its developers proposed dozens
of creative program features and inventive new designs for
information management, drew up hundreds of project plans,
and wrote thousands of lines of code.103 Despite substantial
work over three-plus years, most of the Chandler team
disbanded without a mainstream product release, never
crossing the gap from idea to successful implementation.104
Some of its ideas, though, can be seen in both Apple’s iCal and

paradigms—including agile development methodology; release early, release often; and
open source—all recommend this. See, e.g., Davis et al., supra note 93; Tim O’Reilly,
Design Patterns and Business Models for the Next Generation of Software,
O’REILLY.COM (Sept. 30, 2005).
 98 See FREDERICK P. BROOKS, THE MYTHICAL MAN-MONTH: ESSAYS ON
SOFTWARE ENGINEERING 7 (1995).
 99 Id. at xiii. While the effort ultimately produced an operating system Brooks
called “quite reliable, reasonably efficient, and very versatile. . . . The effort cannot be
called wholly successful, however. . . . [T]he product was late, it took more memory
than planned, the costs were several times the estimate, and it did not perform very
well until several releases after the first.”
 100 Id. at 116.
 101 See generally SCOTT ROSENBERG, DREAMING IN CODE (2007).
 102 Id. at 106-07; see also “JaredRhine,” Chandler Project Vision, CHANDLER
PROJECT (Sept. 10, 2010, 3:42 PM), http://chandlerproject.org/vision.
 103 ROSENBERG, supra note 101, at 20.
 104 The website where the open source software was distributed shows the last
software update in April 2009. Download Chandler Desktop 1.0.3, CHANDLER PROJECT
(July 26, 2010), http://chandlerproject.org/Projects/DownloadChandlerDesktop.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 951

Google Calendar. Had Chandler chosen to patent rather than
follow an open route, its unsuccessful application development
could still block or hold-up Apple’s and Google’s operational
projects, both widely used today.

These examples, from very different software projects,
illustrate the more general challenge of taking software from
idea to implementation. It is never a simple matter of running
“compile”; even the simplest programming project often
requires multiple rounds of redesign, implementation, and
debugging.105 In Brooks’s software development methodology, he
allots just 1/6 of the time of building a software program to
coding, with 1/3 for planning and fully half for testing, first of
components and then of the entire system.106 Following Google’s
lead, many software services now launch with “beta” tags107
while learning from public testing.108 Thus, a patent application

 105 See generally Davis et al., supra note 93. Because of the nature of software
programming, in which there exists a large number of interrelated tasks, the
probability that delays will occur is incredibly high. For instance,

[i]n a single task, the assumption that all will go well has a probabilistic
effect on the schedule. It might indeed go as planned, for there is a
probability distribution for the delay that will be encountered, and ‘no delay’
has a finite probability. A large programming effort, however, consists of
many tasks, some chained end-to-end. The probability that each will go well
becomes vanishingly small.

BROOKS, supra note 98, at 15-16.
 106 Id. at 20.
 107 The Greek letters alpha and beta are used as indicators of product test
phase. The alpha test is the prototype or internal “dogfood” version, while the beta test
is often the first version released to outside testers. See Erik van Veenendaal, ed.,
Standard Glossary of Terms Used in Software Testing, INT’L SOFTWARE TESTING
QUALIFICATIONS BD. (Oct. 19, 2012), http://www.astqb.org/documents/ISTQB_
glossary_of_testing_terms_2.2.pdf. After Google, many companies have mixed some
advertising into the labels, making invited beta testers feel like part of an exclusive
club. See Lapidos, supra note 97.
 108 Software services, which can be updated on the server rather than client-
side, can update their features in-use, with minimal impact on end-users. See Windows Server
Update Services Overview, MICROSOFT TECHNET (Feb. 29, 2012), http://technet.microsoft.com/
en-us/library/hh852345.aspx. Yet even downloadable software is moving toward more
frequent incremental releases. See, e.g., Software Update, APPLE, http://www.apple.com/
softwareupdate/ (last visited Oct. 4, 2012) (“In addition to releasing new versions of the
system software at regular intervals, Apple also releases a stream of free software
updates to enrich your computing experience. Mac OS X automatically checks weekly
for software updates provided you have an internet connection.”); Why Are There So
Many Updates for Windows 7?: Reply to Posting of “AmandaPage,” MICROSOFT
COMMUNITY (Mar. 25, 2012), http://answers.microsoft.com/en-us/windows/forum/
windows_7-windows_update/why-are-there-so-many-updates-for-windows-7/bd2bff08-
0f45-451e-ac13-84cdaec4aa6d?msgId=0b83c4e8-4e38-4c51-a1bd-e76fa9821450 (“I’d like
to believe the World’s a good place but it’s not. You’ve been hearing about ‘hackers,’
‘exploits,’ etc. Many of these updates are to thwart these attacks on the system.”). The
Internet both facilitates and requires this updating: end-users have fast connections that
make downloading updates easy, while network-exploitable flaws increase their urgency.

952 BROOKLYN LAW REVIEW [Vol. 78:3

filed sometime within the coding phase will reflect less than
half the work required to achieve working implementation.109

In an effort to speed up the cycles from design to
implementation, software developers respond with new
methodologies, such as “agile development” and “extreme
programming.”110 Modern software development methodologies
build on the recognition that the conclusion cannot be seen from
the start, even though goals may be fixed.111 Instead of a single
“waterfall,” these methods recommend planning in pieces and
break program development into sub-tasks that can be iterated
individually.112 The overall whole might be patentable, but each
of those pieces is far too small to deserve a patent—yet that’s the
stage at which patents are claimed.113 Patent incentives
encourage inventors to fix more of the pieces at an early stage,
thereby freezing the development before refactoring.

As another alternative to traditional software
development models, many advocate modularity, similarly
decomposing the program’s function into chunks that can be
upgraded without a wholesale rewrite.114 Modular systems,
separable along clearly defined interfaces, are preferred to the
contrasting “spaghetti code,” from which it is difficult to draw
one strand without pulling up a tangle.115 Modules may be as
small as single functions,116 making their reuse easy and more
efficient than rewriting.117

 109 See generally Davis et al., supra note 93.
 110 See Mansor, supra note 93, at 1; VICTOR SZALVAY, AN INTRODUCTION TO
AGILE SOFTWARE DEVELOPMENT (Nov. 2004), available at http://www.danube.com/docs/
Intro_to_Agile.pdf.
 111 SZALVAY, supra note 110, at 7.
 112 Daniel B. Garrie, The Legal Status of Software, 23 J. MARSHALL J.
COMPUTER & INFO. L. 711, 723 (2004).
 113 Kathryn Vesco Chelini, Comment, Pfaff v. Wells Electronics, Inc.: Are You
Risking Your Right to Patent Your Software?, 37 NEW ENG. L. REV. 271, 297 (2003).
 114 Chris Falkowski, Negotiating Intellectual Property Rights in Software-
Related Contracts, MICH. B.J., Aug. 2012, at 31, available at http://www.michbar.org/
journal/pdf/pdf4article2071.pdf.
 115 When Netscape released its browser code to the public, in what would
eventually become the Mozilla project, developers initially doubted they would be able
to do anything with the code. See HENRIK INGO, OPEN LIFE: THE PHILOSOPHY OF OPEN
SOURCE 102 (2006) (“After all the initial excitement, the Mozilla project proved, at least
in part, to be a disappointment. It soon transpired that in the fight to beat Microsoft,
Netscape’s programmers had been pressed for time and had produced really confusing
and low-quality code.”); see also Andy Patrizio, Netscape 6: Does Anyone Care?,
WIRED.COM (Apr. 5, 2000), http://www.wired.com/science/discoveries/news/2000/04/35350.
 116 See supra note 73.
 117 See, e.g., Modules and Packages for Code Reuse, JYTHON PROJECT,
http://www.jython.org/jythonbook/en/1.0/ModulesPackages.html#chapter-8-modules-
and-packages-for-code-reuse (“Modules are helpful for creating libraries that can be
imported and used in different applications that share some functionality.”).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 953

D. Open Source and Free Software

A growing body of software development comes from
free and open source software communities.118 Open source
software is developed to be shared freely, with its source code
attached to the program for others to modify.119 Successful free
and open source projects—including the Linux kernel and the
operating systems around it, the Apache webserver, and
numerous programming languages—do more than just share
their source code; they build collaborative communities around
code development.120 Programmers contribute for a variety of
reasons: personal satisfaction, reputation, and a desire to
improve the functioning and reach of their own applications
running on top.121 By encouraging their employees to
participate, companies contribute to or even lead open source
efforts in order to find talent, enhance their own offerings, and
improve the software that complements their products,
whether those products involve enterprise hardware (IBM),
mobile devices, or search advertising (Google).122

Open source works best when development is modular—
when individual participants can communicate through
patches and improvements. Projects learn to “release early and
often.”123 Rather than saving up for the complete solution, they
reward contributors and speed the test, debug, and improvement
cycle, adding “more eyeballs” to the debug process.

Software development is cumulative—especially when
modular—because it learns efficiently from what goes before
and because it may, over time, incorporate improvements to

 118 While nothing requires that software developed for open source
redistribution be made any differently from proprietary software, many of the most
successful free and open source projects are community-driven. See generally Raymond,
supra note 83. Many participants so associate this community-based mode with free
and open source that they question whether Google’s Android operating system is truly
“open source,” since while Google distributes the source code under an open license, it
does not manage the code base in a community, nor readily accept patches and feature
requests from outside of Google. See Scott Gilbertson, Is Android Open?, WIRED (Oct.
22, 2010, 6:10 PM), http://www.wired.com/epicenter/2010/10/is-android-open/.
 119 Greg R. Vetter, The Collaborative Integrity of Open-Source Software, 2004
UTAH L. REV. 563, 597 (2004).
 120 Id. at 613.
 121 Karim R. Lakhani & Robert Wolf, Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software Projects, in
PERSPECTIVES ON FREE AND OPEN SOURCE SOFTWARE 11-12 (Joe Feller et al., eds., 2005).
 122 See Josh Lerner et al., The Dynamics of Open Source Contributors, 96 AM.
ECON. REV. 114, 115 (2006)); Lakhani & Wolf, supra note 121, at 7, 11 (Rishab Ghosh
on making money from OS software).
 123 See Raymond, supra note 87.

954 BROOKLYN LAW REVIEW [Vol. 78:3

individual components comprising the whole.124 Merges and
Nelson contrast cumulative inventions with discrete inventions,
which tend to be stand-alone products and do not bear the same
potential to “point the way to wide ranging subsequent technical
advances” as do cumulative inventions.125 Consistent with the
benefits of the cumulative process, modularity lowers barriers
to entry, as a newcomer only needs to create a component, and
not an entire product from scratch. Many people have adapted
David Weinberger’s classic description of the Internet as “small
pieces loosely joined” as an equally apt description of the
modularity principle underlying the Unix philosophy.126
Software progresses by sharing design patterns and anti-
patterns127 as well as modules of code. Yet these patterns
remain abstract ideas, which are unfit for patent.

E. Where Does Patent Fit?

The software industry is still young, and the form of
software keeps changing as the machines for which it is written
increase in power. Mainframes dominated the market only half
a century ago, followed by the advent of desktops, and then
portable devices pushed function back out. Now, it is not client-
server so much as client-client-and-multiple-servers that
predominates. Development changes with each of these
movements, but the field changes in waves, not isolated sparks
of genius. As new technologies or platforms appear, new
programs and businesses become possible.128 What was once
unimaginable rapidly becomes obvious with the right tools. But
the patent office, without the right search tools or industry

 124 Falkowski, supra note 114, at 31.
 125 See Robert P. Merges & Richard R. Nelson, On the Complex Economics of
Patent Scope, 90 COLUM. L. REV. 839, 880 (1990).
 126 See Scott Merrill, Everything Old Is New Again: Microsoft MinWin
Attempts to Modularize Windows, TECHCRUNCH (Nov. 18, 2009), http://techcrunch.com/
2009/11/18/everything-old-is-new-again-microsoft-minwin-attempts-to-modularize-
windows/; see also DAVID WEINBERGER, SMALL PIECES LOOSELY JOINED: A UNIFIED
THEORY OF THE WEB (2002), available at http://www.smallpieces.com/index.php.
 127 The first wiki, long before Wikipedia, was MeatballWiki, designed to
facilitate the sharing of software design patterns. Meatball Wiki, C2.COM, http://c2.com/
cgi/wiki?MeatballWiki (last updated Sept. 20, 2012); cf. generally CHRISTOPHER
ALEXANDER, A PATTERN LANGUAGE (1977) (proposing the notion of “pattern languages”
in architecture, upon which software patterns were modeled); see also ERICH GAMMA ET
AL., DESIGN PATTERNS: ELEMENTS OF REUSABLE OBJECT-ORIENTED SOFTWARE, at
foreword (1995).
 128 See Tim O’Reilly, What Is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software, COMM. & STRATEGIES No. 65, at 17, 19 (2007).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 955

experience, sees novelty from the first person who brings in a
new exemplar.129

As the Internet came into commercial use, tens of
thousands of individuals were simultaneously experimenting
with ways to use and build upon this network of networks.
Some adapted old client-server architectures, others built new
peer-to-peer designs. Whereas older patents may have
disclosed “remote” access,130 newer claimants would refer to
“communications networks.”131 In either case, many were laying
claim to combinations that were in fact made obvious by the
new technology and, as a consequence of its obviousness,
should have been held presumptively unpatentable.132

Software developers do not perform patent searches
before developing products. This is a rational decision, especially
in a post-Seagate133 environment when the threat of treble
damages for willful infringement looms slightly less large. Most
rightly recognize they will not find useful information disclosed
in patents, which are written for patent examiners (and to
obscure any similarities to prior art). A search for patents would
be less useful than reading algorithms and public code.

 129 Richard S. Gruner, Better Living Through Software: Promoting
Information Processing Advances Through Patent Incentives, 74 ST. JOHN’S L. REV. 977,
1063-64 (2000) (focuses on lack of patent office abilities, more than threat of falsely
thinking there is novelty—more directed at non-obviousness).
 130 E-Data asserted that its 1985 patent 4,528,643 “system for reproducing
information in material objects at a point-of-sale location,” claiming “information
manufacturing machines located at point-of-sale locations and an information control
machine located remotely,” applied to online media purchases. U.S. Patent No.
4,528,643 (filed Jan. 10, 1983), available at http://patft.uspto.gov/netahtml/
PTO/srchnum.htm (search “4528643”); BESSEN & MEURER, supra note 13, at 8. It won
numerous settlements before the patent was held not to stretch from retail-store kiosks
to personal computer downloads. Id. at 9.
 131 See, e.g., Amazon’s “one-click” ordering patent, Method & System for
Placing a Purchase Order Via a Communications Network, U.S. Patent No. 5,960,411
(filed Sept. 12, 1997) (issued Sept. 28, 1999), available at http://patft.uspto.gov/
netahtml/PTO/srchnum.htm (search “5960411”); MercExchange, LLC’s Consignment
Nodes, U.S. Patent No. 5,845,265 (filed Nov. 7, 1995) (issued Dec. 1, 1998), available at
http://patft.uspto.gov/netahtml/PTO/srchnum.htm (search “5845265”) (claims include
“[t]he apparatus of claim 1 wherein said communications means is via an internet”).
 132 Patent law bases its obviousness judgments on the vantage point of a
person “having ordinary skill in the art.” KSR Int’l Co. v. Teleflex Inc., 550 U.S. 398,
399 (2007) (internal quotation marks omitted); see also supra note 30. The Internet
connectivity and cheap computing revolution dramatically increased the number of
such persons, and the numbers of those above average, so technological advancement
increased the likelihood of simultaneous invention. See Mark A. Lemley, The Myth of
the Sole Inventor, 110 MICH. L. REV. 709, 715 (2012).
 133 In re Seagate Tech., LLC, 497 F.3d 1360, 1371 (Fed. Cir. 2007) (holding
that enhanced damages are available in patent infringement cases only upon a
showing of objective recklessness).

956 BROOKLYN LAW REVIEW [Vol. 78:3

Yet, developers also face pressure to obtain software
patents, especially at an extremely early stage of development.
Despite the prohibition on “abstract idea” patents, most
recently reiterated in Bilski v. Kappos,134 many software patents
describe abstract algorithms—useful algorithms, perhaps—but
claimed at such a level of abstraction that both describes a fact
of nature and requires substantial implementation to capture
their utility. At this stage, the patented algorithm is neither
useful in itself, nor does the patent serve as a useful incentive
to the deployment or commercialization of useful software
embodying it.

Software development is not just risky, it is
fundamentally uncertain.135 Even the most determined efforts
have no definite probability of success. They depend on too
many factors, including quality of programming, hardware
fitness, market readiness, and consumer (network) whims.136
The best chance of success in software resembles the approach
to diversification in financial markets: try many options and
see what works.137 Software lends itself to this approach
because its startup capital costs are low.138 There is no grand
accounting for all the failed projects—after all, most
sourceforge offerings have few or no downloads139—which
simply means that open source is not a magic bullet. By
percentage and by the ratio of successes to costs incurred, open
source does, however, come out well.140

Rapid prototyping, agile development, and “release
early, release often” all share the ability to fail fast, leaving the

 134 130 S. Ct. 3218 (2010). The Bilski Court recited from “precedent[] . . . the
unpatentability of abstract ideas” Id. at 3229.
 135 See generally FRANK H. KNIGHT, RISK, UNCERTAINTY, AND PROFIT (1921).
 136 Many critics judged HP/Palm’s WebOS superior to Apple’s iOS; it offered
multi-tasking sooner and an innovated user interface. See Pal, supra note 58. But HP
partnered with a weak phone carrier, did not open application development soon
enough, and has the division, leaving stacks of unsold phones and tablets. See Chen,
supra note 31.
 137 See Gideon Parchomovsky & R. Polk Wagner, Patent Portfolios, 154 U. PA.
L. REV. 1, 37-39 (2005).
 138 See George Anders, How to Launch a Billion Dollar Startup on a
Shoestring, FORBES (May 2, 2012), http://www.forbes.com/sites/georgeanders/2012/
05/02/thrifty-startup/.
 139 ROSENBERG, supra note 101, at 99 (Of the 100,000+ projects on the
website, “[f]ew have a large population of users; a good number of them are simply one-
person operations.”).
 140 Martin Courtney, Open Source vs. Proprietary Software, COMPUTING.CO.UK
(Apr. 5, 2011), http://www.computing.co.uk/ctg/feature/2040433/source-vs-proprietary-
software (noting the lower total cost of ownership arguments in favor of adopting open
source software).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 957

stage open for another round of experimentation.141 Google’s “20
percent time” reflects a similar move to take advantage of
employees’ latent knowledge and interests, allowing them to
experiment while demanding results.142 This does not work for
developers who are stopped early on by patenting, especially if
pre-failure patenting does not disclose real utility information
to the market. If Chandler’s developers had been patent-
oriented, they would have applied for patents while drafting
their design sketches.

III. PATENT THEORY

In 1958, economist Fritz Machlup took on a Senate
commission to perform “An Economic Review of the Patent
System.” He concluded that review with the equivocal statement,

[i]f we did not have a patent system, it would be irresponsible, on the
basis of our present knowledge of its economic consequences, to
recommend instituting one. But since we have had a patent system
for a long time, it would be irresponsible, on the basis of our present
knowledge, to recommend abolishing it.143

In the half-century since then, scholars have taken up the call
to develop empirical studies of the patent system to improve
our “present knowledge,” while also clarifying the theories by
which patent might operate.

The Constitution authorizes Congress to issue patents—
”[t]o promote the Progress of Science and useful Arts, by
securing for limited Times to Authors and Inventors the
exclusive Right to their respective Writings and Discoveries.”144
Courts and academic analysts have advanced several theories

 141 By contrast, Microsoft’s re-envisioning of the operating system,
“HailStorm,” was described as one large project. See Joe Wilcox, Microsoft’s HailStorm
Unleashed, CNET (Mar. 19, 2001, 12:25 PM), http://news.cnet.com/2100-1001-
254337.html. Faced with a complex task and all the backwards-compatibility
challenges of a second-generation product, the project was significantly delayed from
predicted estimates, and scaled back greatly by the time of its release. Id.
 142 See LEVY, supra note 32, at 124; Google: Official Blog, Google’s “20 Percent
Time” in Action, GOOGLEBLOG (May 18, 2006), http://googleblog.blogspot.com/
2006/05/googles-20-percent-time-in-action.html. Google is also obsessed with usage
testing and data, running A/B tests on the shades of blue or number of links on a
screen. See Charles Arthur, Marissa Mayer’s Appointment: What Does it Mean for
Yahoo?, GUARDIAN (July 16, 2012, 6:35 PM), http://www.guardian.co.uk/technology/
2012/jul/16/marissa-mayer-appointment-mean-yahoo; Laura M. Holson, Putting a
Bolder Face on Google: In Silicon Valley an Executive Turns Celebrity, N.Y. TIMES,
Mar. 1, 2009, at B.1 & B.8.
 143 S. SUBCOMM., ECONOMIC REVIEW, supra note 1.
 144 U.S. CONST. art. I, § 8, cl. 8.

958 BROOKLYN LAW REVIEW [Vol. 78:3

to explain what promoting progress means in the patent
context. Machlup identified the theories as the “monopoly-profit-
incentive” theory, “natural law,” “reward-by-monopoly,” and
“exchange-for-secrets.”145 William Fisher similarly identifies
“utilitarian,” “labor,” “personality,” and “social-planning” theories.146
In recent scholarship, as well as courts and policy debates, the
utilitarian incentive theory has taken primary focus.147

Theory, of course, can be either descriptive or
normative. It can try to map the world of innovation as it exists
or chart a course for future growth. In either case, it requires
an explanatory component, the step in which the features of
the theory are levered against their environment to produce
impact.148 For theories that developed to explain patents
generally, we ask whether the same leverage points and
mechanisms also apply to software inventions.

A. Incentive Economics

If we take the incentive function of patents seriously, we
need to ask not only whether the system works to promote
innovation but also by what mechanism it does so. Incentives
can work either directly or indirectly. If direct, we identify
something we want and pay for it, rewarding its producers,
who increase their productivity in order to earn greater
rewards. The patent system works in the realm of indirect
incentives, granting patents not because patents per se are
inherently valuable, but to promote the “progress of useful
arts,” or innovation. Because we want something—
innovation—we cannot measure or compensate directly, we
reward patent-filers with idea-exclusivity as a proxy for

 145 See S. SUBCOMM., ECONOMIC REVIEW, supra note 1, at 21; see id. at 33
(concluding that “[t]he thesis that the patent system may produce effective profit
incentives for inventive activity and thereby promote progress in the technical arts is
widely accepted. This is regarded as the fundamental economic justification of patents.”).
 146 See William Fisher, Theories of Intellectual Property, in NEW ESSAYS IN THE
LEGAL AND POLITICAL THEORY OF PROPERTY 168, 173 (Stephen R. Munzer ed., 2001).
 147 See S. SUBCOMM., ECONOMIC REVIEW, supra note 1, at 33; see also A.
Samuel Oddi, Un-Unified Economic Theories of Patents—The Not-Quite-Holy Grail, 71
NOTRE DAME L. REV. 267, 277-81 (1996) (discussing other theories and critiques of the
“patent-induced theory”); scholarship cited infra notes 151-57.
 148 For fans of South Park, this is the missing “Phase 2” in the Underpants
Gnomes’ business model. Phase 1: Collect underpants, Phase 2: ?, Phase 3: Profit.
South Park: The Underpants Business (Comedy Central television broadcast Dec. 16, 1998),
available at http://www.southparkstudios.com/clips/151040/the-underpants-business;
Gnomes (South Park), WIKIPEDIA.ORG, http://en.wikipedia.org/wiki/Gnomes_
%28South_Park%29 (last visited Sept. 7, 2012).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 959

innovative activity. With this layer of indirection, however, we
lose some of the incentive’s fidelity to its underlying purpose
and thereby introduce inefficiencies and errors. In particular,
as economists commonly measure the effectiveness of
incentives in principal-agent relationships, we can analyze
some of the effectiveness of the patent system as a matter of
agency costs: how effectively is the principal—the American
public—getting innovation from the agents-developers to whom
it offers patent incentives, and does the rate of innovation
sufficiently outweigh patent’s costs? We gain insight into the
choice by reviewing the agency costs.

As an economic matter, patent offers a tradeoff between
dynamic benefits and static costs. By giving patent-holders a
twenty-year right to exclude, the patent system exchanges
static ex post costs, which include the deadweight loss of
monopoly pricing and restricted opportunities for competitors
to build upon a patented invention, for dynamic ex ante
benefits, such as the encouragement of invention and its
disclosure to the public.149 Because information is a public good,
inventions can be copied more cheaply than they can be
developed. As a result, people responding to economic
incentives would not invest “enough” in invention without some
legally enforced right to exclude.150 Patent’s right to exclude
provides inventors an opportunity to appropriate more of the
returns from investment in research and development.151

The basic utilitarian theory, then, justifies patents as
reward-based incentives for inventive activity. Inventors are
motivated by patent’s exclusive right to invest in research and
development, to innovate, and to disclose to the public, more
than they would under alternative regimes, namely copyright
and trade-secret’s non-disclosure. Without the appropriability
afforded by patent, inventors would refrain from any
investment that an imitator would not also have to make.152
This presents a particularly acute concern in the case of
pharmaceuticals, where it can cost millions of dollars to

 149 DAN L. BURK & MARK A. LEMLEY, THE PATENT CRISIS AND HOW THE
COURTS CAN SOLVE IT 71-72 (2009); JOHN B. TAYLOR & AKILA WEERAPANA, PRINCIPLES
OF MICROECONOMICS 268 (7th ed. 2012).
 150 See generally TAYLOR & WEERAPANA, supra note 149.
 151 Id.
 152 See generally David J. Teece, Profiting from Technological Innovation:
Implications for Integration, Collaboration, Licensing and Public Policy, 15 RES. POL’Y
285 (1986); Kenneth J. Arrow, Economic Welfare and the Allocation of Resources for
Invention, in THE RATE AND DIRECTION OF INVENTIVE ACTIVITY 609-25 (1962).

960 BROOKLYN LAW REVIEW [Vol. 78:3

discover, test, and develop a drug153 but only pennies to
reproduce it.154 Patent exclusivity (along with any statutory or
FDA extension of the term) gives the inventor an opportunity
to recoup investment by charging more than the minimal
marginal cost of reproducing the invention.155

Under a pure reward theory, society should pay
inventors (either through direct or indirect incentives, with the
resulting foregone consumer surplus) only to the extent
necessary to induce innovation.156 Yet, many patents are
granted with no proof that they were necessary but-for causes
of the innovation, and patents often turn out to be useless,
worth less to their owners (not to mention society as a whole)
than they cost. Hence, scholars have developed increasingly
complex mechanisms to explain away the patent paradox, why
inventors seek patents, and why society grants them.157

Prospect Theory: Staking a Claim

Edmund Kitch’s influential “prospect theory” responded
to this mismatch by suggesting that patent’s incentive
functions not through the direct right to exclude but as a
coordinating mechanism for related activity.158 In Kitch’s
theory, the patent claimant, like the prospector who identifies
and stakes out a potential mineral claim, earns the right to
control all activity within that domain, whether or not he knew
its extent at the time.159 Thus, the patent properly claims even
activity unanticipated at the time of the patent application
while blocking others from using the initial invention.

According to Kitch, this prospecting induces the optimal
level and division of activity because the patent-holder is put in
a position to coordinate the research efforts of others. Although

 153 BURK & LEMLEY, supra note 149, at 39.
 154 Id. at 71.
 155 Id.
 156 See Nicholas Economides & William N. Hebert, Patents and Antitrust:
Application to Adjacent Markets, 6 J. TELECOMM. & HIGH TECH. L. 455, 464 (2008)
(“For the duration of the patent monopoly, society temporarily trades the loss in
consumer surplus for the adequate incentive for company A to invent product A.”).
 157 Professors Hall, Ziedonis, Wagner and Parchomovsky run through several
of the accounts that reach the conclusion of “paradox.” See Bronwyn H. Hall &
Rosemarie Ham Ziedonis, The Patent Paradox Revisited: An Empirical Study of
Patenting in the U.S. Semiconductor Industry, 1979–1995, 32 RAND J. OF ECON 101
(2001); Parchomovsky & Wagner, supra note 137.
 158 See Edmund W. Kitch, The Nature and Function of the Patent System, 20
J.L. & ECON. 265, 268 (1977).
 159 BURK & LEMLEY, supra note 149, at 69-70.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 961

development might be incomplete at the time of patent grant,
he argues that early patenting increases efficiency.160 Staking
the claim leaves a marker pointing to its proprietor, putting
others on notice of a prior interest. Whether by conducting
research around his patent claims or licensing that activity to
others, the inventor/patent-holder’s coordination reduces
duplicative research efforts.161

But Kitch’s theory draws heavily on the Coasean
counterfactual, in which transaction costs are low and
information easily available.162 On this premise, Kitch argues
that the patent-holder “coordinate[s] the search for
technological and market enhancement of the patent’s value so
that duplicative investments are not made and so that
information is exchanged among the searchers.”163 Before the
coordination function can arise, however, both the patent-
holder, and, more importantly, the rest of the field’s innovators
must know where the patent’s claims lie and whether their
work approaches or encroaches. This demarcation function
operates particularly poorly in the context of software patents.

Patents do not serve a property-rule’s notice function
well in many industries, as Bessen and Meurer have
documented.164 The failure is heightened in software, where the
language of claims is far removed from that of research and
development.165 Bessen and Meurer argue that patents fail as
property particularly because they fail to give adequate notice
of their boundaries.166 The fuzziness of claims leads to high
clearance costs, failure of the public disclosure function,
uncertainty for both first- and second-comers, and thickets. In
Bessen and Meurer’s study, these problems are particularly
acute for software patents, where the art is both newer and
more abstract. Even if software developers were to search the
patent literature (against the advice of counsel, who generally

 160 Id. at 70.
 161 Id. at 276.
 162 See Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L.
REV. 1575, 1602 (2003) (“The Coase theorem is doing Kitch’s work here.”).
 163 See Kitch, supra note 158, at 276.
 164 Cf. BESSEN & MEURER, supra note 13, at 43 (discussing “analogous
problems that arise during the acquisition of new mineral rights”).
 165 See Kirby Ferguson, Everything is a Remix: Part 4, YOUTUBE (Feb. 16,
2012), http://www.youtube.com/watch?v=yAmmtCJxJJY (describing “information
manufacturing machine, which covers anything computer-like”) (referring to the patent
disputed in Interactive Gift Express, Inc. v. CompuServe Inc., 256 F.3d 1323, 1338-39
(Fed. Cir. 2001); U.S. Patent No. 4,528,643 cols. 4-5 (issued July 9, 1985), available at
http://patft.uspto.gov/netahtml/PTO/srchnum.htm (search “4528643”).
 166 BESSEN & MEURER, supra note 13, at 53.

962 BROOKLYN LAW REVIEW [Vol. 78:3

caution that search just invites claims for willful infringement),
the programmers would be unlikely to find the patents that
could later be claimed against them.167

Kitch proposed that patents serve to coordinate activity,
but more efficient coordination mechanisms exist both within
and outside patent.168 Patents can become more salient
coordination tools when pooled, either as part of a single
company’s portfolio or an industry patent pool. Moreover,
innovators may find that non-market coordination
mechanisms, aided by new communications technologies, make
patent-free coordination more effective.

B. Patent as Coordination

Polk Wagner and Gideon Parchomovsky argue for a
“portfolio theory” of patents.169 A company can be justified in
acquiring patents that are individually worthless, they say, if
those patents fit “into a collection of related patents.”170 “The
heft of a patent portfolio can provide a firm with a strong
market position (either real or perceived) in a particular field,
thus encouraging upstart innovators to combine their
inventions with that of a portfolio holder, rather than seeking
to develop their own market niche.”171 Like a financial portfolio,
the patent holdings gain value and mitigate risk through
diversity.172 The portfolio may send a stronger signal to would-
be competitors than an individual patent would, especially
when combined with an effort by the firm to advertise its
portfolio strength.173 These “super-patents,” advocates point out,
have distributional effects.174 Large companies are better able to

 167 Nor does the patent-coordinated development model even make sense for
software. Burk and Lemley say it applies most convincingly to pharmaceuticals, where
drugs can be accurately and concisely described. See BURK & LEMLEY, supra note 149, at
26-27. There, a patent covers the molecule for a particular use. See id. Others
contemplating the same or similar uses would have to engage in similar exploration and
testing, much of which they can save by licensing the patent. In software, even adapting
software covered by a patent to the same use made by its inventor (which may not be the
use described in the patent disclosure) requires its own implementation and testing. See
infra Part IV.C.1, discussing first-mover advantage and reverse engineering. There’s
much to be gained from software reuse, but that is distinct from patent reuse.
 168 See generally Kitch, supra note 158; see also infra Part III.B-C.
 169 See generally Parchomovsky & Wagner, supra note 137.
 170 Id. at 5-6.
 171 Id. at 33-34.
 172 Id. at 37-38.
 173 Various firms are said to walk into meetings with stacks of patents, saying
in effect “we’ll find something to hurt you with in here.”
 174 Id.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 963

acquire sizeable portfolios, while smaller companies and new
entrants may patent strategically to aim at gaps.175

On the flip side, patent-coordination imposes a sharp
opportunity cost because patent’s advantage as a coordination
mechanism now, and in software-related fields, drops in the
face of new coordination alternatives. The Internet and
electronic communications technologies decrease the costs of
non-patent coordination, enhancing the role of what Yochai
Benkler terms “social production.”176 As the general transaction
costs of communication and creation fall, inventors can engage
in lightweight collaboration more easily. Instead of the
organizing force of a firm, with contracts, NDAs, and overhead,
they may choose to self-organize through mailing lists and
wikis. Software developers share information, just not through
patents; they post and respond to inquiries on StackExchange,
github, wikis, mailing lists, forums, blogs, and microblogs, most
discoverable with a web search such as Google or Bing.177 To
this non-market coordination, patent comes as a hindrance, not
an aid.

Patent defense is costly,178 avoidance impossible, and so
the transaction costs of property rights mount even for those
who wish to work outside the patent system. For example, it
takes several contacts, license agreements, and royalty payments
to join MPEG-LA, the licensor of the AVC patent pool around the
H.264 video codec.179 It takes only a source code checkout to join
Xiph.org in developing or using Theora video,180 but MPEG-LA’s
CEO asserts that users of other codecs face latent patent

 175 See id. at 53-56.
 176 See generally YOCHAI BENKLER, THE WEALTH OF NETWORKS: HOW SOCIAL
PRODUCTION TRANSFORMS MARKETS AND FREEDOM 91-128 (2006), available at
http://www.benkler.org/Benkler_Wealth_Of_Networks.pdf.
 177 See the many programming-language-specific instances of collaboration at
Programmers, STACKEXCHANGE, http://programmers.stackexchange.com/ (last visited
Feb. 26, 2013); GITHUB, https://github.com/ (last visited Feb. 26, 2013), SOURCEFORGE,
http://sourceforge.net/ (last visited Feb. 26, 2013), and Google Code,
http://code.google.com/ (last visited Feb. 26, 2013), are among many online source code
repositories or searches. Starting a project at SourceForge and similar sites will instantiate
a repository, wiki, forum, and mailing lists, any of which may be used for collaborative
development. When these are available on the open web, as many are, programmers asking
similar questions in entirely disparate fields may find them to share information.
 178 See supra note 13.
 179 See Tim Siglin, The H.264 Licensing Labyrinth, STREAMING MEDIA MAG.,
Feb./Mar. 2009, at 80, available at http://www.streamingmedia.com/Articles/Editorial/
Featured-Articles/The-H.264-Licensing-Labyrinth-65403.aspx.
 180 See THEORA, http://www.theora.org/ (last visited Aug. 24, 2012).

964 BROOKLYN LAW REVIEW [Vol. 78:3

conflicts.181 The costs of negotiating licenses even among
themselves may swamp the benefits of informal collaboration,
while developers who agree among themselves to forego patent
claims may still face patent threats from outside. Many, for
example, talk about the problems of clearing rights from
universities or employers in unrelated fields—potential claimants
who may have no plans or opportunities to exploit the ideas but
nonetheless fear “losing” them.182 The costs of patent-property
ownership outweigh its benefits in lightweight collaborations.

Patent thus provides suboptimal coordination. Moreover,
it is insufficient glue around which to coordinate because a
patent is not a right to manufacture, that can thus be “blocked”
in its scope by both prior and subsequent inventions.

C. Patent Races

John Duffy argues that even if prospect-based
coordination fails, the system nonetheless serves economic
efficiency by inducing races to patent early, dissipating the
monopoly rents and producing the social benefit of earlier
innovation.183 In this model, the system correctly encourages
patenting at an early stage, because the multi-party race to
invent, and to claim that invention well before it is
commercially viable, shortens the patent’s lifespan of
exclusivity and sends the invention into commercial use, and
then public domain, faster than it would otherwise appear.
“The prospect features of the patent system are important not
for suppressing or avoiding rivalry, but for accentuating and
directing it.”184 Duffy refines the model from earlier
assumptions, that a course of research is known and merely

 181 Jan Ozer, Ogg, MPEG LA, and Submarine Patents, STREAMINGMEDIA.COM
(Mar. 4, 2010), http://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=65782
(interview with MPEG-LA CEO who expresses concern over latent patent conflicts, or
“submarine patents”).
 182 See, e.g., Limor Fried, Open Hardware Summit 2010 Keynote Address:
Why Do Open Source Hardware? (Sept. 23, 2010), http://www.adafruit.com/blog/2010/
09/27/limor-ladyada-fried-open-source-hardware-summit-keynote-hd-video/. No one
wants to be in the tech transfer office that signs off on free use of the next Gatorade.
 183 John F. Duffy, Rethinking the Prospect Theory of Patents, 71 U. CHI. L.
REV. 439, 443 (2004). But see Michael Abramowicz, The Uneasy Case for Patent Races
Over Auctions, 60 STAN. L. REV. 803, 811-13 (2007) (suggesting that patenting early
can reduce incentives to innovate/commercialize at the end of the patent term); Michael
Abramowicz, The Danger of Underdeveloped Patent Prospects, 92 CORNELL L. REV.
1065, 1065-67 (2007) (patents obtained for their option value may not be developed if
later contingencies do not occur).
 184 Duffy, supra note 183, at 479-80.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 965

awaiting the inventor’s time, to a probabilistic model.185 To
avoid wasteful duplication of effort, he stresses the importance
of early dissemination, either through patent application or
through other information channels.186 Yet here, especially once
we have given up on patent as good coordination, the
expiration of one patent tends not to clear the patent thicket.
The racers barely clear the gate before another crowd is upon
them.

Focusing on commercialization, Ted Sichelman notes
that Duffy’s early patenting provides little incentive for the
significant follow-up work required to take an invention from
conception to market.187 Rather than deferring the patent
application process, he recommends decoupling the invention
and commercialization phases of patent.188 He would offer a
second grant of protection for the “commercialization” phase.189
While this addresses a hole in earlier discussion of patent
timing, it does so by compounding the problems of loose patents,
leaving the earlier non-commercialized patents in front of any
deployment activity.190 Perhaps a provisional patent application,
effective only if completed with evidence of commercialization,
could serve both funding and deployment functions.

Christopher Cotropia identifies related problems as “the
folly of early filing.”191 In particular, he follows Martin and
Parnoy in “analogiz[ing] patent[s] to real options” in the world
of finance as a tool for analyzing the decision to either forgo the
option by abandoning the patent or to exercise it through
commercialization (or alternatively, enforcing the rights of the

 185 Id. at 480-83.
 186 See id. at 482-83.
 187 Ted Sichelman, Commercializing Patents, 62 STAN. L. REV. 341, 389 (2010).
 188 Id. at 400.
 189 See generally id.
 190 The problems of patent-induced uncertainty are further compounded in
Sichelman’s proposed “probabilistic patent races.” Ted Sichelman, Probabilistic Patent
Races (draft presented at IPSC 2010), available at http://www.law.berkeley.edu/
files/bclt_IPSC2010_Sichelman.pdf (last visited Oct. 31, 2012). As with Lemley’s
“rational ignorance” of bad patents, Mark A. Lemley, Rational Ignorance at the Patent
Office, 95 NW. U. L. REV. 1495, 1517 (2001), the theory largely neglects the chilling effect
that assertions of legal claim can have on activity. Cf. Wendy Seltzer, Free Speech
Unmoored in Copyright’s Safe Harbor: Chilling Effects of the DMCA on the First
Amendment, 24 HARV. J.L. & TECH. 171, 176 (2010) (lawful activity may be chilled by
even invalid legal threats).
 191 Christopher A. Cotropia, The Folly of Early Filing in Patent Law, 61
HASTINGS L.J. 65 (2009).

966 BROOKLYN LAW REVIEW [Vol. 78:3

non-commercialized patent through litigation).192 Cotropia
usefully distinguishes the serious problem of non-practicing
entities, recommending elimination of the “constructive
reduction to practice” requirement to delay filing until the
inventor provided actual working code.193 Yet, he does not go far
enough to curb the excesses of practicing trolls who exceed
patent’s bounds of utility. Moreover, leaving statutory bars and
increasing demands of patent, without increasing the minimum
quantum of patented invention, could increase secrecy and
decrease sharing.

D. Patent Signals

Clarisa Long’s Patent Signals suggests a very different
operation, in which patents are valued not for their
exclusionary grant, but as signals, particularly in markets
where other information about business strength or innovative
promise is lacking.194 Startups seeking venture funding have a
limited reputation on which to draw, as compared to publicly
traded companies with a long history in the business, and so
they may seek patents as a way of signaling their innovative
qualities to potential investors.195 This signal is costly (albeit
less costly to innovative firms than to “boring” ones), both to
the signaling companies and to society, if it causes firms to
spend their money wastefully.196 The signal is also societally

 192 See id. at 95 n.208, 108. Under this analogy, the costs of obtaining the
patent represents the purchase price of the option, and the costs of commercialization
represent the cost of exercising the option. Id.
 193 Id. at 120. Cotropia provides a helpful summary of the distinctions
between conception and reduction to practice: “The process of invention involves two
steps—conception and reduction to practice—and is not considered completed until the
performance of the second step.” Id. at 72. However, the second step does not require
actual reduction to practice. Id. at 73. Instead, “constructive reduction to practice,”
which refers to the moment when the invention is described in the patent application
in a way that satisfies the requirements of 35 U.S.C. § 112 of “describ[ing], enabl[ing],
and convey[ing] the best mode of the invention.” Id. By contrast, “actual reduction to
practice” would include “physically implementing the invention . . . and demonstrating
the invention works as intended.” Id.
 194 See generally Clarisa Long, Patent Signals, 69 U. CHI. L. REV. 625, 637 (2002).
 195 See id. at 672 (“Informational asymmetries are particularly acute when the
company is a start-up firm. Start-ups have short histories, no market reputation, and
frequently are in niche markets, often in fast-moving industries All else equal, we would
expect the marginal benefit of a credible means of conveying information to be higher for a firm
that has no market reputation than for a firm that can rely on an established reputation.”).
 196 See id. at 660 (“This signaling approach is individually rational but socially
inefficient. If boring firms can falsely match the signal sent by innovative firms by
obtaining patents, this imposes an externality on innovative firms. The inefficiency
arises not just because boring firms spend resources falsely matching innovative firms’

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 967

costly in creating patent thickets: the patent that was obtained
predominantly for its signaling nature persists for its 20-year
lifetime and, particularly if the company is unsuccessful (i.e.
the signal was misleading), it can be purchased and
weaponized by patent trolls.197

Some economists reject the economic justifications for
patent entirely. Boldrin and Levine, in Against Intellectual
Monopoly, argue that justifications based on high fixed costs and
competitive pricing approaching marginal cost prove too much: so
long as imitators bear fixed costs of imitation, the same barriers
that might deter innovation should deter imitation.198 Since we see
both innovation and imitation, we should instead recognize that a
lead-time advantage, by means of a shorter and more contingent
exclusivity than patent, often provides adequate incentive.

What is the scarce resource that would be under-
produced but for the patent incentive? Information about
needs? Coordination? Generation of ideas? Commercialization?
Dissemination? Or none of the above?

Each of these theoretical treatments focuses on a
different perceived imperfection or scarcity in a property-less
information market. Introducing patents improves efficiencies
by coordinating, forcing information, or concentrating attention
and effort in the place where it would be under-produced if its
producers were unable to appropriate profits through exclusive
rights. But there is no reason to believe that the scarcities and
inefficiencies that existed in prior technological eras will match
those of the present day, especially in the context of computer
technology. It is to those specifics that we now turn.

Burk and Lemley argue that each of these theories and
accounts of innovation describes a different underlying

signals but also because innovative firms may signal excessively in an attempt to
distinguish themselves from boring firms.”).
 197 See Steven Levy, The Patent Problem, WIRED (Nov. 13, 2012, 6:30 AM),
http://www.wired.com/opinion/2012/11/ff-steven-levy-the-patent-problem/all/ (“Because
[the trolls] don’t create anything, they can’t infringe on anyone else’s patents, no
matter how overblown. That means they can’t be countersued. This isn’t mutually
assured destruction; it’s asymmetric warfare.”); cf. Jennifer Urban, Nuclear Deterrence
for Patents: Let’s Create a Network of Defensive Patents, WIRED (Feb. 21, 2013, 6:30
AM), http://www.wired.com/opinion/2013/02/nuclear-deterrence-for-patents-lets-create-
a-network-of-defensive-patents/ (“By de-weaponizing patents this way, the [Defensive
Patent License] could help limit lawsuit risk. This is especially true for the risks posed
by patent trolls, because a patent that can only be used defensively against a large
network of innovators is likely to have little value for a troll.”).
 198 See MICHELE BOLDRIN & DAVID K. LEVINE, AGAINST INTELLECTUAL
MONOPOLY 184-208 (2008).

968 BROOKLYN LAW REVIEW [Vol. 78:3

technology field.199 They recommend judicial tailoring.200
Provided that judges can both distinguish cases consistently in
practice while signaling to the field that they are doing so in an
effort to disfavor software patents, judicial tailoring could
indeed serve as an effective means of changing the law.

IV. PATENT PROBLEMS IN SOFTWARE

Some previous scholarship has considered the industry-
or technology-specific differences in patent’s theory and
application, notably Mark Lemley, with Julie Cohen201 and Dan
Burk,202 and James Bessen and Michael Meurer.203 Michael
Carroll assesses the uniformity costs of intellectual property
law against the simplifying benefits of uniform rules.204 Here, I
take these explorations further with deeper investigation of the
nature and practice of the specific field of software
development, evidence from recent survey reports, and a
synthesis of these insights with theoretical accounts.

Considering how patents are theorized to work, we must
examine these theories against the software practice, asking
whether any of these mechanisms produces incentives that are
appropriate for the development of software and the industries
that use it. Using software patents to create incentives might fail
in two directions: by encouraging the production of the wrong
thing—namely, the production of patents—or by failing to
encourage useful innovation through increasing impediments to it
instead. Happily, the news is not all bleak. We do see innovative
software. Many startups launch with new software products, and
established companies still develop new and existing software
products, both with and without patents on them. Nevertheless,
we also see evidence that by encouraging the creation and use of
patents, the system often interferes with innovation.

 199 See Burk & Lemley, supra note 162, at 1615.
 200 Id. at 1638-39, 1675; see also BURK & LEMLEY, supra note 149, at 95, 108-
09, 167-70.
 201 See Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the
Software Industry, 89 CALIF. L. REV. 1 (2001).
 202 See Dan L. Burk & Mark A. Lemley, Is Patent Law Technology-Specific?,
17 BERKELEY TECH. L.J. 1155 (2002).
 203 See generally BESSEN & MEURER, supra note 13, at 187-214.
 204 See Michael W. Carroll, One for All: The Problem of Uniformity Cost in
Intellectual Property Law, 55 AM. U. L. REV. 845 (2006).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 969

Reports from the Berkeley Patent Survey205 confirm some
intuitions about software patents’ failures while challenging other
assumptions. The survey finds that a relatively large percentage
of entrepreneurs in the software field obtain patents,206 contrary to
the expectations of some critics. Yet, at the same time, these
entrepreneurs “report that patents offer relatively mixed to weak
incentives to engage in innovation.”207 Many of the same
entrepreneurs view patents as valuable for obtaining funding,
either from venture capitalists or friends and family.208

This funding-value is a circular way of measuring
patent’s social value, since entrepreneurs’ perceptions of
investors’ wants may reflect neither the investors’ actual
criteria nor the underlying benefit of the patent.209 Nonetheless,
it is consistent with Long’s theory of patent signals.210 Indeed,
the less sophisticated investors, like the friends and family of
the developer, might be particularly prone to rely on heuristic
signals of quality.211 Unprepared to assess the underlying
financial modeling or business strategy of a friend or relative’s
business, unsophisticated investors might instead view patents
as indicators of the seriousness of the enterprise. Increasingly,
however, venture capitalists in software-related fields are
questioning the link between patents and value.212

A. Second-Order Incentives

Taking the patent system’s incentive function seriously
requires analyzing not just whether but how incentives work,
and to what end. Innovation creates social benefit through the

 205 See generally Stuart J.H. Graham et al., High Technology Entrepreneurs
and the Patent System: Results of the 2008 Berkeley Patent Survey, 24 BERKELEY TECH.
L.J. 1255 (2009).
 206 Id. at 1277-79 (indicating that 24% of software/Internet firms from the
general population, and 67% of venture-backed software/Internet firms reported
holding patents or patent applications).
 207 Id. at 1283. Specifically, when questioned about inventing new products,
processes, or services; conducting initial R&D; creating internal tools or processes to
build or implement final products; or undertaking the risk and costs of making, selling,
and marketing a commercial product, “in no category are patents reported to provide
even ‘moderate’ incentive for any of the four entrepreneurial activities.” Id. at 1285.
 208 Id. at 1271-72.
 209 See id. at 1286-87.
 210 Long, supra note 194, at 637.
 211 See id. at 661-62.
 212 See, e.g., Joi Ito, One Venture Capitalist’s View on Software Patents,
JOIITO.COM (July 08, 2005, 3:48 AM), http://joi.ito.com/weblog/2005/07/08/one-venture-
cap.html; Fred Wilson, Fred Wilson: Software Patents Should Not Exist, FASTER TIMES
(June 3, 2011), http://www.thefastertimes.com/venturecapital/2011/06/03/fred-wilson-
software-patents-should-not-exist.

970 BROOKLYN LAW REVIEW [Vol. 78:3

development of new and better products and services or more
efficient production and delivery of existing goods and services.
If the incentive is poorly tailored to the social benefit, we should
be unsurprised that rather than spurring innovation, software
patents introduce friction, making innovation more difficult and
its products more costly to obtain. Thus we must examine the
interaction between patent’s structure as an incentive system and
the characteristics of software engineering and development, its
industry, and its technological products.213

The mechanics of incentives have been studied
extensively in the context of organizational behavior and
management strategy, where managers strive to set incentives
for employees and contractors that optimize performance in
relation to pay.214 The chief challenge in the field is to strike a
balance between providing employees with incentives to work
toward management’s goals and keeping the employees’
exposure to risk within an acceptable range.215 Thus the
percentage of earnings reflected in salespeople’s commissions,
investment bankers’ bonuses for fund performance, and law
firm associates’ bonuses for hours worked all require
assessment of the correlation between this measure and the
worker’s productive effort and the incentive’s accuracy as a
measure of value to the firm.216

If we consider the patent system as an incentive contract,
it is even less precise than already-problematic incentives like
performance bonuses because patents are at best a second-order

 213 See SUZANNE SCOTCHMER, INNOVATION AND INCENTIVES 39 (2004).
 214 See PAUL MILGROM & JOHN ROBERTS, ECONOMICS, ORGANIZATION AND
MANAGEMENT 208 (1992) (collecting references); Bengt Holmstrom & Paul Milgrom,
Multitask Principal-Agent Analyses: Incentive Contracts, Asset Ownership, and Job
Design, 7 J.L. ECON. & ORG. (SPECIAL ISSUE) 24 (1991).
 215 See id. at 208 (“When rewards are based on results, uncontrollable
randomness in outcomes induces randomness in the employees’ incomes.”). Since there
is an element of randomness in both the measurement of performance and the
correlation of effort to results, basing the employees’ pay on results would subject them
to the full force of this randomness risk. Risk averse employees would choose other
employment rather than risk losing a large part of their prospective pay to
measurement error. Of course there is also a risk of overpayment, but as Kahneman et
al. document, most people are more loss-averse than risk seeking. See Daniel
Kahneman et al., Anomalies: The Endowment Effect, Loss Aversion, and Status Quo
Bias, 5 J. ECON. PERSP., Winter 1991, at 202-03.
 216 Pay that reflected only value to the firm, entirely tied to a product’s sales
for example, would subject the salesperson to risks outside her control such as supply
shortfalls. Pay tied to a measure of effort such as hours, may induce bleary-eyed nights
at the office with diminishing marginal value to the firm. Of course reducing the risk to
the actor in control of assets has its own dangers; among the factors in the financial
crisis, many point to the highly leveraged position of hedge fund managers, gambling
with customers’ money and not their own.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 971

prediction of desired results. As a society we are trying to induce
innovation—the delivery to market of fully-realized products.
Rather than measure innovation directly, however, the patent
system focuses on inventions as “constructively reduced to
practice” by means of patent applications,217 which may or may not
correspond to usable innovations.

Economists and management scholars distinguish
between invention and innovation. Invention is the spark of an
idea, while “innovation means invention implemented and
taken to market.”218 In order for the public to benefit from
development, it must have not only a source of ideas but also
an engine of implementation.219 There is often not a clear break,
either in the language or the technological process, between
basic research and applied science, or between initial
application and industrial-scale production. The end-points,
however, are clearly distinct: the idea of a transistor can be
part of a theoretical model, but only the manufactured
component can actually perform switching functions.

This split is reflected in the law: patent does not protect
“abstract ideas.”220 This limitation on statutory subject matter is
“consistent with the notion that a patentable process must be
‘new and useful.’”221 Abstract ideas are excluded because they
are not directly useful. Machlup concluded that “[patent]
incentives are supposed to generate technological inventions
plus innovations—innovation being the first commercial
application of a new idea. Invention without application is

 217 See U.S. PATENT & TRADEMARK OFFICE, MANUAL OF PATENT EXAMINING
PROCEDURE § 2138.05 (2001), available at http://www.uspto.gov/web/offices/pac/mpep/
documents/2100_2138_05.htm (“Reduction to practice may be an actual reduction or a
constructive reduction to practice which occurs when a patent application on the
claimed invention is filed. The filing of a patent application serves as conception and
constructive reduction to practice of the subject matter described in the application.
Thus the inventor need not provide evidence of either conception or actual reduction to
practice when relying on the content of the patent application.” (citing Hyatt v. Boone,
146 F.3d 1348, 1352 (Fed. Cir. 1998))).
 218 CHESBROUGH, supra note 90, at ix.
 219 Scotchmer describes economic theories of “production-function” and
“endogenous-growth,” differing in their assessment of the bottleneck’s relationship to
innovation and growth, and then sets up a third “ideas model” that needs funding both
as a spur to the creation of ideas and to their further development as products.
SCOTCHMER, supra note 213, at 54-55.
 220 See Bilski v. Kappos, 130 S. Ct. 3218, 3221 (2010) (denying patent to method
for hedging risk) (“The Court’s precedents provide three specific exceptions to § 101’s
broad [patent-eligibility] principles: ‘laws of nature, physical phenomena, and abstract
ideas.’” (quoting Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980))); see also generally
BEN KLEMENS, MATH YOU CAN’T USE: PATENTS, COPYRIGHT, AND SOFTWARE (2006).
 221 See Bilski, 130 S. Ct. at 3225.

972 BROOKLYN LAW REVIEW [Vol. 78:3

useless; practical application may depend on patent protection
even where invention does not.”222

To be a socially useful incentive, then, patents must
encourage innovation: the development and deployment of
invention.223 In software, however, the long road from idea to
implementation often snags on patents early in the course.
Engineers can describe what they want software to do—in
terms that have been sufficient for the PTO—well before they
have made it work. Pressures to patent early produce a thicket
of pre-implementation claims.

The costs of the incentive’s mismatch escalate as we
consider patent’s side-effects.224 The old management saw,
“what gets measured, gets done” applies to patents too. As
patents appear to offer an objective measure of employees’
productivity, companies offer bonuses to those who obtain
patents, fueling a race to patent even more.225 James Gosling,
the computer scientist who invented and developed the Java
programming language and left Sun Microsystems after its
acquisition by Oracle, describes the extreme lengths to which
the race can go: “Even though we had a basic distaste for
patents, the game is what it is, and patents are essential in
modern corporations, if only as a defensive measure. There was
even an unofficial competition to see who could get the goofiest
patent through the system.”226

This response is common among technology companies
that offer patent-filing bonuses or special recognition to
inventors when patents are filed and issued. It also illustrates
Milgrom and Roberts’s “equal compensation principle”: if there

 222 See S. SUBCOMM., ECONOMIC REVIEW, supra note 1, at 78.
 223 We may get innovation from rewarding invention, or find that innovation
correlates with the visible invention, but we lose information along the way.
 224 The simple response, that patents improve efficiency by granting property
rights to enable localized control of resource allocation, makes the same category error:
the property right is only efficient if the right thing is propertized. If the lines are
drawn too broadly or too early, transaction costs and hold-up swallow the gains.
 225 Richard S. Gruner, Corporate Patents: Optimizing Organizational
Responses to Innovation Opportunities and Invention Discoveries, 10 MARQ. INTELL.
PROP. L. REV. 1, 30 (2006).
 226 See James Gosling, Quite the Firestorm: On a New Road, NIGHTHACKS.COM
(Aug. 15, 2010), http://nighthacks.com/roller/jag/entry/quite_the_firestorm (“In Sun’s
early history, we didn’t think much of patents. While there’s a kernel of good sense in
the reasoning for patents, the system itself has gotten goofy. Sun didn’t file many
patents initially. But then we got sued by IBM for violating the ‘RISC patent’—a
patent that essentially said ‘if you make something simpler, it’ll go faster[.]’ Seemed
like a blindingly obvious notion that shouldn’t have been patentable, but we got sued,
and lost. The penalty was huge. Nearly put us out of business. We survived, but to help
protect us from future suits we went on a patenting binge.”).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 973

are several things an agent is expected to do, either all should
be the subjects of similar incentive payments—or none should
be.227 Otherwise, the differential availability of incentive pay will
distort the selection among activities—people will do most of
what pays them the highest bonus.228 What holds for individuals
can apply to companies as well. The availability of patent, and
the perceived benefits thereof, steers them toward patentable
effort and away from other economically valuable activity.229

B. Software’s Salient Distinctions

Software-based industries share common features
distinct from many other fields in which patenting has been
studied in detail.230 These include lower capital costs, which
make the transaction costs of licensing a larger percentage;
more smaller, distributed players; lower pure research costs
and a focus on implementation; and lower uncertainty of
development (as distinct from high uncertainty of market
success); high complexity of a software product; and
information costs and the nature of the software input.231 Other
differences apply more directly to the patent process, including
the relative recency of the field and dearth of formal
publication, which hinder prior art searches and novelty/non-
obviousness assessments as well as lower patent’s utility for
information-transfer.

Software’s structural distinctions affect both the
operation of patent law and its incentive effect. The first set of
problems has attracted more scholarly attention than the
second.232 In particular, the distributed, decentralized, and even
atomistic nature of development makes the novelty and non-
obviousness inquiries more difficult.233 Much of software’s prior

 227 Cf. MILGROM & ROBERTS, supra note 214, at 229.
 228 See id.
 229 See Parchomovsky & Wagner, supra note 137, at 19.
 230 See supra Part II. Many different kinds of firms make and use software.
Some are pure “software” businesses, mass-market or customize; others make software
to use in their research or business, to complement their hardware, to sell as
integrated “solutions.” Among them are many different modes of producing software:
open source, shared, or proprietary. The heterogeneity still leaves significant
commonality distinct from other fields.
 231 See supra Parts II.A-II.D.
 232 Even that comparison is relative. Cohen and Lemley complain that “[w]hile
there is a voluminous literature on whether software is (or should be) patentable
subject matter, there is much less discussion of other patent validity issues.” Cohen &
Lemley, supra note 201, at 13-14.
 233 See supra Part II.

974 BROOKLYN LAW REVIEW [Vol. 78:3

art is published in ephemeral Internet forum posts and mailing
lists, or in the source code of fleetingly available commercial
products; the prior art is not, however, published in the PTO’s
database of patents or recognized journals.234 That challenge is
intensified by the transitional state of the patent system with
regard to software, which has still only recently been recognized as
patentable subject-matter, so the PTO’s experience with the field
and its databases are thinner than those in non-software fields.235

Disclosure and enablement tend to be stinted as well.
The patent’s disclosure is not of functioning code, but of
procedural steps.236 Another person “of skill in the art” could
implement from these outlines, but without saving much time
following the originator.237 Moreover, because of the abstraction
of many software patent claims and the wide breadth given to
equivalents, it can be difficult to locate a patent on a given
subject or to glean from its claims and disclosure any indication
as to what the patent will be judged to cover. Is it worth
spending more time trying to fix these examination and scope
problems? Mark Lemley’s Rational Ignorance argues that the
answer is no because most patents are not worth more time
and expense in examination.238 Yet while many bad patents will
never be asserted against anyone, software patents present a
likely scenario in which “bad” patents on basic functions are
used broadly.

The structural differences in software patent’s
incentives have been less well-studied. In comparison to
pharmaceutical and semiconductor industries, software’s
capital costs are lower, primarily because its R&D is structured
differently.239 In accord with Moore’s Law, the costs of computer
hardware, the chief capital input to software development,
have decreased steadily.240 Whereas the capital and regulatory

 234 See Cohen & Lemley, supra note 201, at 13 (“Unlike inventions in more
established engineering fields, most software inventions are not described in published
journals.”).
 235 Bradford L. Smith & Susan O. Mann, Innovation and Intellectual Property
Protection in the Software Industry: An Emerging Role for Patents?, 71 U. CHI. L. REV.
241, 258 (2004).
 236 See supra note 65 and accompanying text.
 237 See supra Part I.C.
 238 See Lemley, supra note 190, at 1496-97.
 239 See supra note 153 and accompanying text.
 240 “Moore’s Law” derives from a prediction by Intel CEO Gordon Moore that
transistors’ counts on an integrated circuit (and thus processing power) would double
every two years. That prediction has continued to hold over more general measures of
computing power, doubling approximately every 18 months and its associated costs
decreasing. Paul. E. Ceruzzi, Moore’s Law and Technological Determinism: Reflections

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 975

requirements of drug development tend to cause consolidation
in pharmaceutical research among a relatively small number of
large companies, software exhibits no such pressure. Hence
there are more independent developers who can experiment
without having to convince others in advance. An individual or
small group can aggregate the resources for software
development independently and thus does not have to recruit
outside investors with the promise of a privileged stake in
exclusive rights in order to develop at least as far as the proof-
of-concept stage.241 Thus the archetypal software innovator, the
“guy or gal in the garage,” is actually a significant presence
because a garage (or loft, or cheap co-working space) can hold
the relatively ubiquitous tools of software development—the
computer and its network connection—fairly cheaply and
remain well within the resources available to the independent
developer.

Nor does a company need a huge staff to develop
software. A small team or single programmer can complete
significant projects. Indeed, Frederick Brooks famously noted
that “[a]dding manpower to a late software project makes it
later,” finding that coordination problems among larger teams
swamped the added productivity of extra workers.242 While there
is some specialization (e.g. user-interface design), many software
projects can be undertaken by the same programmers from start
to finish, without task-based division of labor.243 Modular
design—reducing the interdependencies that exist among
software components—can only partially reduce these
coordination challenges; modularity often waits for a second-
round design.244

on the History of Technology, 46 TECH. & CULTURE 584, 585 (2005); Michael Kanellos,
Moore’s Law to Roll on for Another Decade, CNET.COM (Feb. 10, 2003), available at
http://news.cnet.com/2100-1001-984051.html; BURK & LEMLEY, supra note 149, at 83.
 241 For Barbara van Schewick’s description of distributed innovation and its
value on the Internet, see BARBARA VAN SCHEWICK, INTERNET ARCHITECTURE AND
INNOVATION 347 (2010).
 242 BROOKS, supra note 98, at 25.
 243 See, e.g., NATHAN DENNY ET AL., NEXUS OF ENTREPRENEURSHIP & TECH.,
UNIV. ARIZ., AGILE SOFTWARE FOR THE 24-HOUR KNOWLEDGE FACTORY ENVIRONMENT,
available at http://next.eller.arizona.edu/publications/ssrn/AlternativeLinks/Agile%20
Software%20Processes%20for%20the%2024-Hour%20Knowledge%20Factory%20
Environment.pdf. Agile programming methodologies specifically call upon the same
programmers to run through various tasks of design, implementation, and testing. See
generally ALISTAIR COCKBURN, AGILE SOFTWARE DEVELOPMENT (2001).
 244 See CARLISS Y. BALDWIN & KIM B. CLARK, DESIGN RULES, THE POWER OF
MODULARITY 355-57 (2000).

976 BROOKLYN LAW REVIEW [Vol. 78:3

These minimal capital requirements allow software
development to be widely dispersed, conducted by both
specialists and non-specialists, big and small firms, and
companies and individuals. There is no single natural
clearinghouse for information exchange—either for sharing of
research or for licensing of patents. This does not mean
information is not shared—many programmers participate in
informal information exchange through forums and mailing
lists, share demonstrations, and read professional publications.245
Open source and Free Software development exhibit an extreme
version of information-sharing: much development, even by
contributors from large firms, is done on an individual basis,
with a great deal of information published along the way.246
Propertizing and pricing information, rather than bringing
efficiency to its transfer, burdens the information exchange.
Against this baseline, demands for patent license fees can be a
significant burden, even if the fees are low.247

In combination, we see the full force of software patents’
harm, as they contribute to the prevalence of trolls, thickets,
and pools impeding software innovation.

1. Trolls248

Because of low barriers to entry, the software industry
is rife with start-ups: entrepreneurial ventures and individuals
with ideas. Some are successful, while others inevitably fail.249
Since patents correlate poorly with product success, many
unsuccessful companies nonetheless own issued patents.
Patent protects the idea, as “constructively reduced to practice”
by the filing of a patent application.250 If patents are seen as
valuable signals, then, would-be venture-funded firms
participate in the rush to the patent office to get theirs, but the
first in line will not have necessarily made a functioning
prototype, much less a deployed system. Another developer
who has developed a functioning system, on the other hand, is

 245 See, e.g., DEV SHED FORUMS, http://forums.devshed.com (last visited Feb. 2,
2013); CODECALL, http://codecall.net (last visited Feb. 2, 2013); CODEGURU,
http://codeguru.com (last visited Feb. 2, 2012).
 246 See supra Part II.D.
 247 See Kapczynski, supra note 88, at 993-94.
 248 See infra note 252.
 249 See Rita Gunther McGrath, Falling Forward: Real Options Reasoning and
Entrepreneurial Failure, 24 ACAD. MGMT. REV., Jan. 1999, at 13-30 (characterizing the
role of failure in entrepreneurial innovation).
 250 See 37 C.F.R. § 1.131(b) (2012).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 977

unlikely to have learned it from the patent literature. Success
in the market may be determined by factors of marketing
strategy, network effects, and may be only loosely coupled with
the pure quality of the software product. In sum, patent does
not predict quality.251

This mismatch helps to produce patent trolls.252 In many
instances, a company will have filed one or more software
patents, but then the company fails because its product never
reached market, failed to work, or because the market just did
not like it. It is also possible that the patent, obtained early,
distracted engineering, strategic, and financial resources from
core business. Still, failure should be acceptable as an expected
part of the entrepreneurial system; just as innovation happens
through risk-taking, the entrepreneurial society is able to
forget failures and allow its founders to move on.253

But, the patent does not die with the company. Instead, it
persists, left like a land-mine long after that particular company
has departed the battlefield. Often, “intellectual property,” the
only asset left, gets sold off to a holding company willing to pay
something for this hunting license—a patent troll who then
proceeds to look for others successfully making or using similar
technology.254 By protecting early-stage ideas, the patent system
has fed this pipeline, inducing not productive innovation but
unproductive races for merely redistributive ends.

“Troll” may be an epithet, but “non-practicing entities”
(NPEs) share a set of distinguishing features. In particular,
they contribute nothing to the development and deployment of
technology.255 They maintain their patents solely for the
purpose of perfecting claims for a share of the profits of others
who actually make things—claims asserted in legal threats and

 251 See supra note 59; see also Louis Kaplow, The Patent-Antitrust Intersection:
A Reappraisal, 97 HARV. L. REV. 1813, 1823 (1984).
 252 Trolls, or “non-practicing entities,” can threaten and sue based on the
patents in their portfolios, but cannot be counter-sued for patent infringement (as is
common in suits between competitors) because the trolls are not practicing any of the
arts they seek to license; they only exist to extract royalty revenue. Colleen V. Chien,
Of Trolls, Davids, Goliaths, and Kings: Narratives and Evidence in the Litigation of
High-Tech Patents, 87 N.C. L. REV. 1571, 1578-80 (2009).
 253 See Sankaran Venkataraman, Regional Transformation Through
Technological Entrepreneurship, 19 J. BUS. VENTURING 153, 164-65 (2004) (describing
the role of social safety nets and acceptance of failure to entrepreneurial productivity).
 254 See supra note 197; see also Gerard N. Magliocca, Blackberries and
Barnyards: Patent Trolls and the Perils of Innovation, 82 NOTRE DAME L. REV. 1809,
1817 (2006–2007).
 255 James Bessen et al., The Private and Social Costs of Patent Trolls, REG.,
Winter 2011–2012, at 26; John M Golden, “Patent Trolls” and Patent Remedies, 85 TEX
L. REV. 2111, 2112 (2007).

978 BROOKLYN LAW REVIEW [Vol. 78:3

costly litigation against manufacturing entities.256 NPEs are not
sensitive to the same forces as going concerns. When they
explicitly monetize the process, they can crowd out non-
monetary considerations in innovation.

Defenders of non-practicing entities typically argue that
they provide liquidity in patent markets257: “Liquidity” is only
valuable if it provides resources for something independently
valuable. If software patents serve as stumbling blocks rather
than building blocks for future innovators, providing “liquid”
encouragement to those who produce them is counterproductive.

2. Thickets

Since each patent covers only a small component of a
program’s overall function, any single patent can block; many
patents pooled together, however, can block with real market
power. It takes only a few patents stacked together to consume
the entire profit of a software product, given that “reasonable
royalties” are taken as percentages for any patent serving as a
necessary contribution.258 Moreover, because software components
are not purchased and exhausted in the same way that hardware
components may be, it is riskier for downstream innovators to
build upon existing work.259

Since independent invention is not a defense, a
developer may unwittingly stumble across another’s patents,
which can then become too costly to clear. In this context,
patents serve an anti-coordination function.260 Moreover,
software products are complex, incorporating many functional
components, whether separated along modular lines or fused
together. Patents can be written to many sizes: if small, then

 256 Bessen et al., supra note 255, at 26, 34-35.
 257 See Michael Risch, Patent Troll Myths, 42 SETON HALL L. REV. 457, 459,
466 (2012); Sannu K. Shrestha, Note, Trolls or Market-Makers? An Empirical Analysis
of Nonpracticing Entities, 110 COLUM. L. REV. 114, 115-16, 130 (2010).
 258 See generally Mark A. Lemley & Carl Shapiro, Patent Holdup and Royalty
Stacking, 85 TEX. L. REV. 1991 (2007).
 259 See id. Someone who invests in building on an unpatented commodity can
purchase components on the open market and thus expect to reap all the rewards of
success or losses of failure, while someone who builds on a patented product may still
bear all the risks, but face royalty demands if he succeeds. It may be argued that the
switch from sale to licensing of components is beneficial price discrimination, which
enables component-makers to reap the full value of their inventions. Much finer price-
discrimination can deprive the downstream users of spillover benefits that would have
given them an opportunity to innovate.
 260 See Michael A. Heller, The Tragedy of the Anticommons: Property in the
Transition from Marx to Markets, 111 HARV. L. REV. 621 (1998).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 979

numerous potential patents exist within a given product; if
large, then there will be many different ways to accomplish the
patent’s ends, and the scope of equivalents will be too large.

3. Pools

At other times, patent pools are used to coordinate, or
standardize, an industry. Pooling can serve to clear the
thickets of competing claim, by drawing all of those with claims
to a technology into one place for joint licensing.261 Pools often
cross-license freely to anyone who contributes an “essential”
patent—providing added inducement for companies to obtain
such patents—but this creates problems of a different sort for
those outside the pool or to those for whom patents on per-copy
royalty terms are not an option, such as Free Software.262

Wagner and Parchomovsky see the centralizing effects
of portfolio use, but they do not pursue its full implications,
that is, when incumbents coordinate in pools to erect barriers
to entry against newcomers.263 That centralization of innovation
opportunities restricts who can develop new technology.264 Such
control reduces options for diversity of experimentation and
disruptive innovation.265

Further, patents pose a particular challenge to open
source and Free Software that is developed collaboratively
outside of traditional firms.266 Apart from the already-noted
mismatch between patent fees and low-cost or free distribution,
per-copy royalties and usage limits are incompatible with the
freedom to modify and redistribute that lies at the heart of

 261 Philip B. Nelson, Patent Pools: An Economic Assessment of Current Law
and Policy, 38 RUTGERS L.J. 539, 539 (2007).
 262 Id. at 542.
 263 See Parchomovsky & Wagner, supra note 137, at 66-67 (“As firms
increasingly use portfolios as ever more effective tools for the domination of innovation
markets, the results would seem to be (1) a broad consolidation and centralization of
inventive activity within large firms or groups of firms organized around jointly
developed patent portfolios, and (2) the use of portfolios to achieve real market power
or otherwise cartelize markets.” (footnotes omitted)).
 264 Compare this with the centralization by anticircumvention measures and
their licensing described in Wendy Seltzer, The Imperfect Is the Enemy of the Good:
Anticircumvention Versus Open User Innovation, 25 BERKELEY TECH. L.J. 909, 958
(2010); see also VAN SCHEWICK, supra note 241, at 342 (describing the benefits of an
architecture that enables distributed innovation, permitting experimentation at the
edges to succeed).
 265 See generally CLAYTON M. CHRISTENSEN, THE INNOVATOR’S DILEMMA (2003).
 266 See BENKLER, supra note 176, at 63-64; Seltzer, supra note 264, at 965-66
(describing free and open source software and the welfare benefits of open user innovation).

980 BROOKLYN LAW REVIEW [Vol. 78:3

Free Software.267 The social costs of the patent incentive are
high and mounting.

C. Appropriability Alternatives

A more sophisticated argument for patents in early-
stage ideas develops a more complex theory of causation. It is
not that we need incentives for ideas but that we want to give
inventors “appropriability strategies” for their information
goods, and we choose to do that through early-stage patents for
purposes of administrability.268 Given the negative side effects
of this appropriation strategy, however, we must also consider
how alternatives compare. Software businesses need not resort
to patent, as software offers a wealth of alternative
appropriability strategies: copyright, trade secret, first-mover
advantage, network effects, and complements.

1. Non-Patent Intellectual Property

Copyright. Copyright protects software against direct
copying of source or compiled binary programs. A fully
constructed program is protected by copyright against
reproduction, including reproduction in the course of use.269
While copyright protects only the expressive elements of
software, and not its functions, this separation preserves the
first-mover’s lead-time advantage. A competitor may reverse
engineer in order to copy software’s function,270 but copyright-
safe reverse-engineering is time-consuming.271 To guard against
claims of copyright infringement, a competitor will have one

 267 See Free Software Found., Inc., GNU General Public License v.3 (June 29,
2007), https://www.gnu.org/copyleft/gpl.html.
 268 See SCOTCHMER, supra note 213, at 2-3.
 269 See MAI Sys. Corp. v. Peak Comp., Inc., 991 F.2d 511, 518-19 (9th Cir.
1993) (holding that loading a copy of a computer program into RAM constituted
“reproduction” under the Copyright Act). Section 117 creates only narrow statutory
exceptions that authorize such reproduction only by the lawful owner of a computer
program or by maintenance on a machine with an authorized copy. Id. at 519 n.6.
 270 See Pamela Samuelson & Suzanne Scotchmer, The Law and Economics of
Reverse Engineering, 111 YALE L.J. 1575, 1608 (2002). Compare Whelan Assocs. v.
Jaslow Dental Lab., Inc., 797 F.2d 1222, 1237 (3d Cir. 1986) (holding that along with
its literal expression, a program’s “structure, sequence, and operation” are protected by
copyright), with Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1518 (9th Cir. 1992)
(holding copying of the object code necessary to the process of disassembly and re-
creation of the functionality to be fair use); see also Lotus Dev. Corp. v. Borland Int’l,
Inc., 49 F.3d 807, 815 (1st Cir. 1995), aff’d, 140 F.3d 70 (1st Cir. 1998) (permitting
copying of functional elements of user interface and menus as “method of operation.”).
 271 See Whelan Assocs., 797 F.2d at 1237 (noting that it would take a
competitor almost as long to reverse engineer).

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 981

team examine or decompile the original program and pass only
functional descriptions to a second team of programmers in a
“clean room” for re-implementation. “Reverse engineering of
object code is generally so difficult, time-consuming, and
resource-intensive that it is not an efficient way to develop
competing but nonidentical programs.”272 Moreover, reverse
engineering does not short-cut the time-consuming steps of
debugging and testing. To re-implement successfully, developers
will have to rewrite and test their new programs and, if trying
to achieve compatibility with an existing program, will have to
preserve not only features but bug-compatibility.273

Trade Secrecy. Many software vendors likewise exploit
trade secrecy. Those who distribute software in object code
form can hide the details of its construction and modification,
sometimes with further layers of obfuscation beyond mere
compilation.274 While reverse engineering is a legitimate means
of acquiring trade secrets, producers are under no obligation to
make reverse engineering easy. Unlike in most other areas,
trade secret and copyright can coexist in software. The
copyright office, which keeps public records of copyright
registrations, accepts redacted deposits of program code,
enabling developers to register while still keeping the source
code to their work secret.275 Trade secrecy also bars commercial
fraud, such as taking programmatic details from a competitor
or former employer. Moreover, producers can achieve greater
secrecy in software that is not distributed to end-users but
offered as “software as a service,” for example, by running on a
producer-operated server to which users connect.276 Even less of
the functional detail is exposed to end-users, who can analyze
its function only through inputs and outputs.277

 272 See Samuelson & Scotchmer, supra note 270, at 1613 (citing Andrew
Johnson-Laird, Software Reverse-Engineering in the Real World, 19 U. DAYTON L. REV.
843, 843 (1994)).
 273 Id. at 1613-14.
 274 See, e.g., Computer Object Code Obfuscation Using Boot Installation, U.S.
Pat. App. 2009/0235089, available at http://appft.uspto.gov/netahtml/PTO/
srchnum.html (search “20090235089”).
 275 See U.S. COPYRIGHT OFFICE, CIRCULAR 61.0812, COPYRIGHT REGISTRATION
FOR COMPUTER PROGRAMS (2012), available at http://www.copyright.gov/circs/circ61.pdf
(instructing submitters to deposit computer programs “with trade secret portions blocked out”).
 276 See generally Press Release, Gartner, Inc., Gartner Says Worldwide
Software as a Service Revenue Is Forecast to Grow 21 Percent in 2011 (July 7, 2011),
available at http://www.gartner.com/newsroom/id/1739214.
 277 It is possible to reverse-engineer such a black-box, but it is more difficult.
See generally, e.g., ANDREW “BUNNIE” HUANG, HACKING THE X-BOX: AN INTRODUCTION
TO REVERSE ENGINEERING (2003).

982 BROOKLYN LAW REVIEW [Vol. 78:3

Finally, consider patent as a response to Arrow’s
information “paradox”: the purchaser cannot know information’s
value until it has been disclosed, at which point (without
intellectual property’s constraints) the buyer would have no
need to pay.278 The hypothesis behind this theory is that without
patent, parties would not disclose their ideas, either as
products on the market to end-users or as ideas-in-development
in search of funders and collaborators. Instead, against the
threat from industrial competition, inventors might integrate
vertically to keep trade secrets within the expanded firm.
Against the consumer, they would try to obfuscate operation to
preserve secrecy against reverse engineers.

While these closure reactions may well reduce
opportunities for innovation on those elements the company can
shield from disclosure, they do not have the infectious reach of
patents. Patents can intrude even on independent development
since, in contrast to copyright, independent invention is not a
defense to patent infringement claims.279

2. Business Strategy

The wealth of literature on software industry business
strategies mentions intellectual property only fleetingly,
spending more time on platform management, establishing
first-mover advantage and network barriers to entry, and
selling complementary goods or services.280 That, and the
success of the industry in the years before software patents

 278 See KENNETH J. ARROW, ESSAYS IN THE THEORY OF RISK-BEARING 152
(1971) (“[Information’s] value for the purchaser is not known until he has the
information, but then he has in effect acquired it without cost.”).
 279 Copyright applies only to acts of copying and does not bar independent
discovery. See Sheldon v. MGM Pictures Corp., 81 F.2d 49, 54 (2d Cir. 1936). As
Learned Hand put it, “[I]f by some magic a man who had never known it were to
compose anew Keats’s Ode on a Grecian Urn, he would be an ‘author,’ and if he
copyrighted it, others might not copy that poem, though they might of course copy
Keats’s.” Id. By contrast, independent invention is not a defense to patent
infringement, 35 U.S.C. § 271(a) (2006), despite the frequency of concurrent invention
in history (The steam engine and telephone are early famous examples.).
 280 See, e.g., MICHAEL A. CUSUMANO, THE BUSINESS OF SOFTWARE (2004);
DAVID S. EVANS ET AL., INVISIBLE ENGINES: HOW SOFTWARE PLATFORMS DRIVE
INNOVATION AND TRANSFORM INDUSTRIES (2006), available at http://mitpress.mit.edu/
catalog/item/ebook.asp?ttype=2&tid=11447; ANNABELLE GAWER, PLATFORMS, MARKETS
AND INNOVATION (2010); ANNABELLE GAWER & MICHAEL A. CUSUMANO, PLATFORM
LEADERSHIP: HOW INTEL, MICROSOFT, AND CISCO DRIVE INDUSTRY INNOVATION (2002);
Jean-Charles Rochet & Jean Tirole, Platform Competition in Two-sided Markets, 1 J.
EUR. ECON. ASS’N 990 (2003); Annabelle Gawer, Towards a General Theory of
Technological Platforms (2010) (unpublished manuscript), available at http://www2.druid.dk/
conferences/viewpaper.php?id=501981&cf=43.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 983

were seen as viable, argue strongly against their value now.
Software producers can appropriate value to their efforts from
strategies involving marketing or business structures.

First-Mover Advantage. Simply being first gives an
innovator the opportunity to establish itself as category leader,
where it may capture an audience, lock-in resources, or secure
complements and make them unavailable to imitators.281

Complements. Some producers deploy software as a
complement to hardware or services. If the software is most
useful when coupled with proprietary hardware on which the
producer profits, or if it adds value to that hardware, the
producer may be able to give the software away (or sell it
cheaply) while profiting on the hardware. The software can
even serve as an advertisement of the hardware’s capabilities.282
IBM’s contributions to the open source Linux kernel enhance
the support for its specialized hardware and the performance of
systems it sells.283 Some producers go further and lock their
software to hardware, exploiting the DMCA’s anticircumvention
provisions to bind the two together.284 In a complements market,
where both components are necessary, it does not matter on
which component the producer takes profit. (Consider the
complementary markets for left and right shoes. A monopolist
on left shoes could give away right shoes while reaping supra-
competitive prices on the matching left shoes.) Thus, where it is
difficult to profit from software directly, producers may bundle
its price into something else that is more easily metered.

Network Effects. Some software producers exploit
network effects in use. That is, one user’s use of software adds
value for others doing so.285 Like the telephone or fax machine, a
software-service like Facebook or Twitter exhibits such
network effects: users’ utility depends on being able to connect
with their friends using the same services. Other software,

 281 See generally Marvin B. Lieberman & David B. Montgomery, First-Mover
Advantages, 9 STRATEGIC MGMT. J. 41, 41-47 (1988).
 282 Thus, accelerated video cards often come with bundled graphics or
videogame applications to show off the cards’ power. See, e.g., Dean Takahashi, AMD
Bundles Marquee PC Games with Its Radeon Graphics Cards, VENTUREBEAT.COM (Oct.
21, 2012, 9:01 PM), http://venturebeat.com/2012/10/21/amd-bundles-marquee-pc-games-
with-its-radeon-graphics-cards/.
 283 See David Berlind, Open Source: IBM’s Deadly Weapon, ZDNET.COM (Apr. 8,
2002, 7:00 PM), http://www.zdnet.com/news/open-source-ibms-deadly-weapon/296366.
 284 See Apple Inc. v. Psystar Corp., 658 F.3d 1150, 1153 (9th Cir. 2011)
(describing Apple’s use-licensing and technological measures “to prevent Mac OS X
from operating on non-Apple computers,” and finding Psystar in violation of copyright
and anticircumvention laws).
 285 See SHAPIRO & VARIAN, supra note 57, at 174.

984 BROOKLYN LAW REVIEW [Vol. 78:3

such as word processing and graphics tools, shows “virtual”
network effects: users generally use it in solitary mode but seek
to exchange files and formats with others and benefit when
others are using compatible or the same software. Network
effects can contribute to locking-in customers, inducing them to
continue using the same products or upgrades even if others
(such as imitators) would serve their purposes equally well
absent network externalities.286

Platforms. Software can create a platform on which
goods or services can be exchanged. Microsoft’s Windows 7 and
Apple’s MacOS operating systems are platforms for application
software. Google and Facebook are platforms for advertising to
end-users. In a “multi-sided market,” the platform proprietor
may subsidize one side of the market in exchange for extracting
greater revenues elsewhere.287 Thus, Google and Facebook
provide software-services free to the end-users conducting
searches or networking with friends, while charging advertisers
to reach those end-users.288 The advertisers are buying access to
the crowds more than to particular software algorithms.

Standards. De facto or de jure standards affect the
network.289 They can promote interoperability, or, when patented,
can give control of the network value to a patent-holder, who may
be responsible for only a small fraction of it.290 Patents may
promote coordination among those with compatible business
models, while excluding those whose mode of operation would
not generate per-copy royalties.

Services. Software development is often sold as a
service, through consulting contracts or employment. The success
of an existing product or component advertises developers’
services to others who may be interested in new development or
customization.291 The utility of already deployed software can
serve as more reliable signals than the number of patents.

 286 See id. at 184-85; but see S.J. Liebowitz & Stephen E. Margolis, Path
Dependence, Lock-in, and History, 11 J.L. ECON. & ORG. 205 (1995).
 287 See Thomas Eisenmann et al., Strategies for Two-Sided Markets, HARV.
BUS. REV., Oct. 1, 2006, at 94.
 288 See Rafe Needleman, Facebook vs. Google: The Epic Battle, CNET (May 17,
2012, 5:55 AM), http://news.cnet.com/8301-1023_3-57435965-93/facebook-vs-google-the-
epic-battle (describing business models and revenue sources of both firms).
 289 See S.J. Liebowitz & Stephen E. Margolis, Should Technology Choice Be a
Concern of Antitrust Policy, 9 HARV. J.L. & TECH. 283, 290-91 (1996); see also SHAPIRO
& VARIAN, supra note 57, at 237-38.
 290 Cf. Mark A. Lemley & David McGowan, Could Java Change Everything?
The Competition Propriety of a Proprietary Standard, 43 ANTITRUST BULL. 715 (1998).
 291 See Karim R. Lakhani & Eric von Hippel, How Open Source Software
Works: “Free” User-to-User Assistance, 32 RES. POL’Y 923, 923 (2003); Lakhani & Wolf,

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 985

Alternative appropriability regimes provide incentives
for software development, while sparing the “embarrassment”292
of patent’s exclusive rights to ideas. These regimes operate
under different constraints than the patent system. In
particular, in order for any of the methods described above to
appropriate returns to a software developer, invention must be
taken beyond the mere idea point to achieve implementation.
Furthermore, many of these regimes provide appropriability
without exclusive rights to the underlying concepts. For
example, under copyright protection, interoperable software
programs coexist; improvement is not restricted to the initial
developer. Some of these strategies tend toward monopoly,
particularly those involving network effects and platforms. The
length of those monopolies, however, will be set by the market,
with competitors forcing even platform providers to innovate293
(and possible regulatory and judicial intervention where the
market fails),294 rather than by the fixed term of patent.

Most important, these appropriability alternatives do
not bar independent exploration of the problem space. They do
not guarantee that one who explores and develops new
software products will gain a property right, but they do assure
that the explorer will not stumble across others’ unmarked
property along the way.295

V. RESHAPING THE LAW

The challenge of reshaping the law is multi-faceted,
involving choosing the right law and policy for software
innovation, line-drawing to set the right granularity for its
application, and getting that law enacted. Focusing on any

supra note 121, at 3 (describing app and game mod competitions as job fairs, and open
source participation as part of a resume); see generally CHRIS ANDERSON, FREE: THE
FUTURE OF A RADICAL PRICE (2009).
 292 See THOMAS JEFFERSON, Letter from Thomas Jefferson to Isaac M’Pherson Aug.
13, 1813, in BASIC WRITINGS OF THOMAS JEFFERSON 708, 712-13 (Philip S. Foner ed., 1944).
 293 See Michael L. Katz & Howard A. Shelanski, “Schumpeterian” Competition
and Antitrust Policy in High-Tech Markets, COMPETITION 4 (2005) (describing a
dynamic in which “firms do not compete simultaneously for a share of the market, but
rather sequentially for the market as a whole”). A platform provider who becomes
complacent risks losing even the momentum it has built.
 294 See, e.g., United States v. Microsoft Corp., 253 F.3d 34 (D.C. Cir. 2001).
 295 See generally Stephen M. Maurer & Suzanne Scotchmer, The Independent-
Invention Defence in Intellectual Property, 69 ECONOMICA 535 (2002) (making an
economic theory case for an independent invention defense: it will tend to lower the rents
from patent’s exclusive right, and will thereby make the pre-patent race less wasteful).

986 BROOKLYN LAW REVIEW [Vol. 78:3

single level will produce ineffective, impractical, or
unimplementable recommendations.

If software patents are counter-productive—and we
would foster more innovative activity and product deployment
without these impediments—it is still no simple matter to
change the legal treatment of software inventions. In Congress,
proponents of patent reform began with grand plans for what
became the “America Invents Act,” including a restructuring of
willful infringement to remove the threat of treble damages
that stops many engineers from even reading patents. What
eventually came out of negotiations was a pale shadow of these
plans, making only minor changes to the law’s structure and
substance. Thus, although it might be productive to change the
law to require that an implementation be submitted and
published, rather than accepting its abstract description, the
public choice challenges of tinkering with a mostly-acceptable
status quo may prove too great. Can anything change now
given the “installed base” of software patent defenders?

Moreover, even if stronger legal prohibitions existed
than the current restriction on “abstract ideas,” statutes would
remain open to strategic loophole-finding. The European Union
officially does not recognize or grant software patents, but plenty
of software is patented on the fiction that its implementation is
“on a machine” that contains more than just software.296

Instead, since courts will inevitably play a necessary
role in implementing software patent reform, they could use
the leeway in existing statute and precedent to swing away
from protecting software. The courts could, therefore, correctly
recognize software as a collection of mere abstract ideas
implemented on general-purpose machines.297

Technological specificity in the patent system introduces
transaction and information costs, as participants try to game
their way into the most protective category—even if they would
all be better off in a scenario in which the category protected none
of them. On the other hand, a uniform patent system has its own
costs, because uniform rules may fit none of the categories well.
As we have seen, what works for pharmaceuticals and large-scale
manufacturing does not fit the dynamics of the software industry.

 296 Susan J. Marsnik & Robert E. Thomas, Drawing a Line in the Patent
Subject-Matter Sands: Does Europe Provide a Solution to the Software and Business
Method Patent Problem?, 34 B.C. INT’L & COMP. L. REV. 227, 277 (2011).
 297 See BURK & LEMLEY, supra note 149, at 122-24.

2013] SOFTWARE PATENTS AND/OR SOFTWARE DEVELOPMENT 987

As well as addressing specific problems with patent
theory and patent law as applied to the software industry, this
analysis points to larger challenges in the “stickiness” of
property rules. Not only are individual endowments of property
and property rights sticky,298 but structures of property rules
and their definitions of the underlying “property” persist even
into contexts well beyond their original justifications.

Compare debates around wireless spectrum use. Auctions
to establish property rights in frequency bands were initially
seen as more efficient than command-and-control licensing for a
particular use.299 But once rights in those bands were established,
rights-holders and their boundaries become difficult to dislodge,
even for more productive re-deployment of the spectrum, such as
from broadcast to “white-spaces” user-defined use.300 Moreover,
even if some participants could be induced to trade their rights if
their counterparties could aggregate the value, uses that cut
across property boundaries—such as spread-spectrum
technology—have largely been unable to coordinate enough
rights-holders and have faced hold-out problems.301

For all the academic articulation of problems with the
patent system, patent law has proven remarkably resistant to
reform. This property lock-in should give us pause in creating
new rights and will thus require creative coalition-building,
such as Creative Commons, to re-imagine existing grants.

 298 See Daniel Kahneman et al., Experimental Tests of the Endowment Effect
and the Coase Theorem, 98 J. POL. ECON. 1325, 1345 (1990).
 299 See R.H. Coase, The Federal Communications Commission, 2 J.L. & ECON.
1, 20-21 (1959); see generally Harold Demsetz, Industry Structure, Market Rivalry, and
Public Policy, 16 J.L. & ECON. 1 (1973).
 300 See David J. Farber & Gerald R. Faulhaber, Spectrum Management: Property
Rights, Markets, and the Commons 9 (AEI-Brookings Joint Center for Regulatory Studies,
Working Paper 02-12, 2002); Yochai Benkler, Open Wireless vs. Licensed Spectrum: Evidence
from Market Adoption 19 (unpublished manuscript), available at http://www.benkler.org/
Open_Wireless_V_Licensed_Spectrum_Market_Adoption_current.pdf.
 301 See Michael A. Heller, The Tragedy of the Anticommons: Property in the
Transition from Marx to Markets, 111 HARV. L. REV. 621, 625 n.15 (1998).

